Multiloop algebras, iterated loop algebras and extended affine Lie algebras of nullity 2
- Autores
- Allison, Bruce; Berman, Stephen; Pianzola, Arturo
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let M(n) be the class of all multiloop algebras of finite dimensional simple Lie algebras relative to n-tuples of commuting finite order automorphisms. It is a classical result that M(n) the class of all derived algebras modulo their centres of affine Kac-Moody Lie algebras. This combined with the Peterson-Kac conjugacy theorem for affine algebras results in a classification of the algebras in M(1). In this paper, we classify the algebras in M(2), and further determine the relationship between M(2) and two other classes of Lie algebras: the class of all loop algebras of affine Lie algebras and the class of all extended affine Lie algebras of nullity 2.
Fil: Allison, Bruce. University of Alberta; Canadá
Fil: Berman, Stephen. No especifica;
Fil: Pianzola, Arturo. University of Alberta; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Extended affine Lie algebras
Multiloop algebras
Loop algebras - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/33160
Ver los metadatos del registro completo
| id |
CONICETDig_cb0c20726de2dc955c65a7288c92a1ec |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/33160 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Multiloop algebras, iterated loop algebras and extended affine Lie algebras of nullity 2Allison, BruceBerman, StephenPianzola, ArturoExtended affine Lie algebrasMultiloop algebrasLoop algebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let M(n) be the class of all multiloop algebras of finite dimensional simple Lie algebras relative to n-tuples of commuting finite order automorphisms. It is a classical result that M(n) the class of all derived algebras modulo their centres of affine Kac-Moody Lie algebras. This combined with the Peterson-Kac conjugacy theorem for affine algebras results in a classification of the algebras in M(1). In this paper, we classify the algebras in M(2), and further determine the relationship between M(2) and two other classes of Lie algebras: the class of all loop algebras of affine Lie algebras and the class of all extended affine Lie algebras of nullity 2.Fil: Allison, Bruce. University of Alberta; CanadáFil: Berman, Stephen. No especifica;Fil: Pianzola, Arturo. University of Alberta; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaEuropean Mathematical Society2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33160Pianzola, Arturo; Allison, Bruce; Berman, Stephen; Multiloop algebras, iterated loop algebras and extended affine Lie algebras of nullity 2; European Mathematical Society; Journal of the European Mathematical Society; 16; 2; 1-2014; 327-3851435-9855CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4171/JEMS/435info:eu-repo/semantics/altIdentifier/url/http://www.ems-ph.org/journals/show_abstract.php?issn=1435-9855&vol=16&iss=2&rank=5info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1002.2674info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:41:20Zoai:ri.conicet.gov.ar:11336/33160instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:41:20.982CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Multiloop algebras, iterated loop algebras and extended affine Lie algebras of nullity 2 |
| title |
Multiloop algebras, iterated loop algebras and extended affine Lie algebras of nullity 2 |
| spellingShingle |
Multiloop algebras, iterated loop algebras and extended affine Lie algebras of nullity 2 Allison, Bruce Extended affine Lie algebras Multiloop algebras Loop algebras |
| title_short |
Multiloop algebras, iterated loop algebras and extended affine Lie algebras of nullity 2 |
| title_full |
Multiloop algebras, iterated loop algebras and extended affine Lie algebras of nullity 2 |
| title_fullStr |
Multiloop algebras, iterated loop algebras and extended affine Lie algebras of nullity 2 |
| title_full_unstemmed |
Multiloop algebras, iterated loop algebras and extended affine Lie algebras of nullity 2 |
| title_sort |
Multiloop algebras, iterated loop algebras and extended affine Lie algebras of nullity 2 |
| dc.creator.none.fl_str_mv |
Allison, Bruce Berman, Stephen Pianzola, Arturo |
| author |
Allison, Bruce |
| author_facet |
Allison, Bruce Berman, Stephen Pianzola, Arturo |
| author_role |
author |
| author2 |
Berman, Stephen Pianzola, Arturo |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Extended affine Lie algebras Multiloop algebras Loop algebras |
| topic |
Extended affine Lie algebras Multiloop algebras Loop algebras |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let M(n) be the class of all multiloop algebras of finite dimensional simple Lie algebras relative to n-tuples of commuting finite order automorphisms. It is a classical result that M(n) the class of all derived algebras modulo their centres of affine Kac-Moody Lie algebras. This combined with the Peterson-Kac conjugacy theorem for affine algebras results in a classification of the algebras in M(1). In this paper, we classify the algebras in M(2), and further determine the relationship between M(2) and two other classes of Lie algebras: the class of all loop algebras of affine Lie algebras and the class of all extended affine Lie algebras of nullity 2. Fil: Allison, Bruce. University of Alberta; Canadá Fil: Berman, Stephen. No especifica; Fil: Pianzola, Arturo. University of Alberta; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
Let M(n) be the class of all multiloop algebras of finite dimensional simple Lie algebras relative to n-tuples of commuting finite order automorphisms. It is a classical result that M(n) the class of all derived algebras modulo their centres of affine Kac-Moody Lie algebras. This combined with the Peterson-Kac conjugacy theorem for affine algebras results in a classification of the algebras in M(1). In this paper, we classify the algebras in M(2), and further determine the relationship between M(2) and two other classes of Lie algebras: the class of all loop algebras of affine Lie algebras and the class of all extended affine Lie algebras of nullity 2. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/33160 Pianzola, Arturo; Allison, Bruce; Berman, Stephen; Multiloop algebras, iterated loop algebras and extended affine Lie algebras of nullity 2; European Mathematical Society; Journal of the European Mathematical Society; 16; 2; 1-2014; 327-385 1435-9855 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/33160 |
| identifier_str_mv |
Pianzola, Arturo; Allison, Bruce; Berman, Stephen; Multiloop algebras, iterated loop algebras and extended affine Lie algebras of nullity 2; European Mathematical Society; Journal of the European Mathematical Society; 16; 2; 1-2014; 327-385 1435-9855 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.4171/JEMS/435 info:eu-repo/semantics/altIdentifier/url/http://www.ems-ph.org/journals/show_abstract.php?issn=1435-9855&vol=16&iss=2&rank=5 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1002.2674 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
European Mathematical Society |
| publisher.none.fl_str_mv |
European Mathematical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597568912621568 |
| score |
12.976206 |