Homeomorphisms acting on Besov an Triebel-Lizorkin paces of Local Regularity
- Autores
- Hartzstein, Silvia Inés; Viviani, Beatriz Eleonora
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The aim of this paper is to show that the integral and derivative operators defined by local regularities are homeomorphisms for generalized Besov and TriebelLizorkin spaces with local regularities. The underlying geometry is that of homogeneous type spaces and the functions defining local regularities belong to a larger class of growth functions than the potentials t_, related to classical fractional integral and derivative operators and Besov and TriebelLizorkin spaces.
Fil: Hartzstein, Silvia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
Fractional Integral
Derivative Operator
Generalized Besov and Triebel-Lizorkin Spaces - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84063
Ver los metadatos del registro completo
id |
CONICETDig_f0107c381e2c7a5c979cfadc888dcac9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84063 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Homeomorphisms acting on Besov an Triebel-Lizorkin paces of Local RegularityHartzstein, Silvia InésViviani, Beatriz EleonoraFractional IntegralDerivative OperatorGeneralized Besov and Triebel-Lizorkin Spaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The aim of this paper is to show that the integral and derivative operators defined by local regularities are homeomorphisms for generalized Besov and TriebelLizorkin spaces with local regularities. The underlying geometry is that of homogeneous type spaces and the functions defining local regularities belong to a larger class of growth functions than the potentials t_, related to classical fractional integral and derivative operators and Besov and TriebelLizorkin spaces.Fil: Hartzstein, Silvia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaUniversidad de Barcelona2005-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84063Hartzstein, Silvia Inés; Viviani, Beatriz Eleonora; Homeomorphisms acting on Besov an Triebel-Lizorkin paces of Local Regularity; Universidad de Barcelona; Collectanea Mathematica; 56; 1; 12-2005; 27-450010-0757CONICET DigitalCONICETenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:32:15Zoai:ri.conicet.gov.ar:11336/84063instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:32:15.837CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Homeomorphisms acting on Besov an Triebel-Lizorkin paces of Local Regularity |
title |
Homeomorphisms acting on Besov an Triebel-Lizorkin paces of Local Regularity |
spellingShingle |
Homeomorphisms acting on Besov an Triebel-Lizorkin paces of Local Regularity Hartzstein, Silvia Inés Fractional Integral Derivative Operator Generalized Besov and Triebel-Lizorkin Spaces |
title_short |
Homeomorphisms acting on Besov an Triebel-Lizorkin paces of Local Regularity |
title_full |
Homeomorphisms acting on Besov an Triebel-Lizorkin paces of Local Regularity |
title_fullStr |
Homeomorphisms acting on Besov an Triebel-Lizorkin paces of Local Regularity |
title_full_unstemmed |
Homeomorphisms acting on Besov an Triebel-Lizorkin paces of Local Regularity |
title_sort |
Homeomorphisms acting on Besov an Triebel-Lizorkin paces of Local Regularity |
dc.creator.none.fl_str_mv |
Hartzstein, Silvia Inés Viviani, Beatriz Eleonora |
author |
Hartzstein, Silvia Inés |
author_facet |
Hartzstein, Silvia Inés Viviani, Beatriz Eleonora |
author_role |
author |
author2 |
Viviani, Beatriz Eleonora |
author2_role |
author |
dc.subject.none.fl_str_mv |
Fractional Integral Derivative Operator Generalized Besov and Triebel-Lizorkin Spaces |
topic |
Fractional Integral Derivative Operator Generalized Besov and Triebel-Lizorkin Spaces |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The aim of this paper is to show that the integral and derivative operators defined by local regularities are homeomorphisms for generalized Besov and TriebelLizorkin spaces with local regularities. The underlying geometry is that of homogeneous type spaces and the functions defining local regularities belong to a larger class of growth functions than the potentials t_, related to classical fractional integral and derivative operators and Besov and TriebelLizorkin spaces. Fil: Hartzstein, Silvia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
description |
The aim of this paper is to show that the integral and derivative operators defined by local regularities are homeomorphisms for generalized Besov and TriebelLizorkin spaces with local regularities. The underlying geometry is that of homogeneous type spaces and the functions defining local regularities belong to a larger class of growth functions than the potentials t_, related to classical fractional integral and derivative operators and Besov and TriebelLizorkin spaces. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84063 Hartzstein, Silvia Inés; Viviani, Beatriz Eleonora; Homeomorphisms acting on Besov an Triebel-Lizorkin paces of Local Regularity; Universidad de Barcelona; Collectanea Mathematica; 56; 1; 12-2005; 27-45 0010-0757 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/84063 |
identifier_str_mv |
Hartzstein, Silvia Inés; Viviani, Beatriz Eleonora; Homeomorphisms acting on Besov an Triebel-Lizorkin paces of Local Regularity; Universidad de Barcelona; Collectanea Mathematica; 56; 1; 12-2005; 27-45 0010-0757 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Barcelona |
publisher.none.fl_str_mv |
Universidad de Barcelona |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614336005275648 |
score |
13.070432 |