Homeomorphisms acting on Besov an Triebel-Lizorkin paces of Local Regularity

Autores
Hartzstein, Silvia Inés; Viviani, Beatriz Eleonora
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The aim of this paper is to show that the integral and derivative operators defined by local regularities are homeomorphisms for generalized Besov and TriebelLizorkin spaces with local regularities. The underlying geometry is that of homogeneous type spaces and the functions defining local regularities belong to a larger class of growth functions than the potentials t_, related to classical fractional integral and derivative operators and Besov and TriebelLizorkin spaces.
Fil: Hartzstein, Silvia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Materia
Fractional Integral
Derivative Operator
Generalized Besov and Triebel-Lizorkin Spaces
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/84063

id CONICETDig_f0107c381e2c7a5c979cfadc888dcac9
oai_identifier_str oai:ri.conicet.gov.ar:11336/84063
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Homeomorphisms acting on Besov an Triebel-Lizorkin paces of Local RegularityHartzstein, Silvia InésViviani, Beatriz EleonoraFractional IntegralDerivative OperatorGeneralized Besov and Triebel-Lizorkin Spaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The aim of this paper is to show that the integral and derivative operators defined by local regularities are homeomorphisms for generalized Besov and TriebelLizorkin spaces with local regularities. The underlying geometry is that of homogeneous type spaces and the functions defining local regularities belong to a larger class of growth functions than the potentials t_, related to classical fractional integral and derivative operators and Besov and TriebelLizorkin spaces.Fil: Hartzstein, Silvia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaUniversidad de Barcelona2005-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84063Hartzstein, Silvia Inés; Viviani, Beatriz Eleonora; Homeomorphisms acting on Besov an Triebel-Lizorkin paces of Local Regularity; Universidad de Barcelona; Collectanea Mathematica; 56; 1; 12-2005; 27-450010-0757CONICET DigitalCONICETenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:32:15Zoai:ri.conicet.gov.ar:11336/84063instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:32:15.837CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Homeomorphisms acting on Besov an Triebel-Lizorkin paces of Local Regularity
title Homeomorphisms acting on Besov an Triebel-Lizorkin paces of Local Regularity
spellingShingle Homeomorphisms acting on Besov an Triebel-Lizorkin paces of Local Regularity
Hartzstein, Silvia Inés
Fractional Integral
Derivative Operator
Generalized Besov and Triebel-Lizorkin Spaces
title_short Homeomorphisms acting on Besov an Triebel-Lizorkin paces of Local Regularity
title_full Homeomorphisms acting on Besov an Triebel-Lizorkin paces of Local Regularity
title_fullStr Homeomorphisms acting on Besov an Triebel-Lizorkin paces of Local Regularity
title_full_unstemmed Homeomorphisms acting on Besov an Triebel-Lizorkin paces of Local Regularity
title_sort Homeomorphisms acting on Besov an Triebel-Lizorkin paces of Local Regularity
dc.creator.none.fl_str_mv Hartzstein, Silvia Inés
Viviani, Beatriz Eleonora
author Hartzstein, Silvia Inés
author_facet Hartzstein, Silvia Inés
Viviani, Beatriz Eleonora
author_role author
author2 Viviani, Beatriz Eleonora
author2_role author
dc.subject.none.fl_str_mv Fractional Integral
Derivative Operator
Generalized Besov and Triebel-Lizorkin Spaces
topic Fractional Integral
Derivative Operator
Generalized Besov and Triebel-Lizorkin Spaces
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The aim of this paper is to show that the integral and derivative operators defined by local regularities are homeomorphisms for generalized Besov and TriebelLizorkin spaces with local regularities. The underlying geometry is that of homogeneous type spaces and the functions defining local regularities belong to a larger class of growth functions than the potentials t_, related to classical fractional integral and derivative operators and Besov and TriebelLizorkin spaces.
Fil: Hartzstein, Silvia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
description The aim of this paper is to show that the integral and derivative operators defined by local regularities are homeomorphisms for generalized Besov and TriebelLizorkin spaces with local regularities. The underlying geometry is that of homogeneous type spaces and the functions defining local regularities belong to a larger class of growth functions than the potentials t_, related to classical fractional integral and derivative operators and Besov and TriebelLizorkin spaces.
publishDate 2005
dc.date.none.fl_str_mv 2005-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/84063
Hartzstein, Silvia Inés; Viviani, Beatriz Eleonora; Homeomorphisms acting on Besov an Triebel-Lizorkin paces of Local Regularity; Universidad de Barcelona; Collectanea Mathematica; 56; 1; 12-2005; 27-45
0010-0757
CONICET Digital
CONICET
url http://hdl.handle.net/11336/84063
identifier_str_mv Hartzstein, Silvia Inés; Viviani, Beatriz Eleonora; Homeomorphisms acting on Besov an Triebel-Lizorkin paces of Local Regularity; Universidad de Barcelona; Collectanea Mathematica; 56; 1; 12-2005; 27-45
0010-0757
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad de Barcelona
publisher.none.fl_str_mv Universidad de Barcelona
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614336005275648
score 13.070432