Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces
- Autores
- Cabrelli, C.; Molter, U.; Romero, J.L.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article we construct affine systems that provide a simultaneous atomic decomposition for a wide class of functional spaces including the Lebesgue spaces Lp(Rd), 1 < p < + ∞. The novelty and difficulty of this construction is that we allow for non-lattice translations.We prove that for an arbitrary expansive matrix A and any set Λ-satisfying a certain spreadness condition but otherwise irregular-there exists a smooth window whose translations along the elements of Λ and dilations by powers of A provide an atomic decomposition for the whole range of the anisotropic Triebel-Lizorkin spaces. The generating window can be either chosen to be bandlimited or to have compact support.To derive these results we start with a known general "painless" construction that has recently appeared in the literature. We show that this construction extends to Besov and Triebel-Lizorkin spaces by providing adequate dual systems. © 2012 Elsevier Ltd.
Fil:Cabrelli, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Molter, U. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Romero, J.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Adv. Math. 2013;232(1):98-120
- Materia
-
Affine systems
Anisotropic function spaces
Besov spaces
Non-uniform atomic decomposition
Triebel-Lizorkin spaces - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00018708_v232_n1_p98_Cabrelli
Ver los metadatos del registro completo
| id |
BDUBAFCEN_0e430c6c3b30a96df505a31e159a1a15 |
|---|---|
| oai_identifier_str |
paperaa:paper_00018708_v232_n1_p98_Cabrelli |
| network_acronym_str |
BDUBAFCEN |
| repository_id_str |
1896 |
| network_name_str |
Biblioteca Digital (UBA-FCEN) |
| spelling |
Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spacesCabrelli, C.Molter, U.Romero, J.L.Affine systemsAnisotropic function spacesBesov spacesNon-uniform atomic decompositionTriebel-Lizorkin spacesIn this article we construct affine systems that provide a simultaneous atomic decomposition for a wide class of functional spaces including the Lebesgue spaces Lp(Rd), 1 < p < + ∞. The novelty and difficulty of this construction is that we allow for non-lattice translations.We prove that for an arbitrary expansive matrix A and any set Λ-satisfying a certain spreadness condition but otherwise irregular-there exists a smooth window whose translations along the elements of Λ and dilations by powers of A provide an atomic decomposition for the whole range of the anisotropic Triebel-Lizorkin spaces. The generating window can be either chosen to be bandlimited or to have compact support.To derive these results we start with a known general "painless" construction that has recently appeared in the literature. We show that this construction extends to Besov and Triebel-Lizorkin spaces by providing adequate dual systems. © 2012 Elsevier Ltd.Fil:Cabrelli, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Molter, U. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Romero, J.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00018708_v232_n1_p98_CabrelliAdv. Math. 2013;232(1):98-120reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-23T11:18:30Zpaperaa:paper_00018708_v232_n1_p98_CabrelliInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-23 11:18:32.748Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
| dc.title.none.fl_str_mv |
Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces |
| title |
Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces |
| spellingShingle |
Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces Cabrelli, C. Affine systems Anisotropic function spaces Besov spaces Non-uniform atomic decomposition Triebel-Lizorkin spaces |
| title_short |
Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces |
| title_full |
Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces |
| title_fullStr |
Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces |
| title_full_unstemmed |
Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces |
| title_sort |
Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces |
| dc.creator.none.fl_str_mv |
Cabrelli, C. Molter, U. Romero, J.L. |
| author |
Cabrelli, C. |
| author_facet |
Cabrelli, C. Molter, U. Romero, J.L. |
| author_role |
author |
| author2 |
Molter, U. Romero, J.L. |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Affine systems Anisotropic function spaces Besov spaces Non-uniform atomic decomposition Triebel-Lizorkin spaces |
| topic |
Affine systems Anisotropic function spaces Besov spaces Non-uniform atomic decomposition Triebel-Lizorkin spaces |
| dc.description.none.fl_txt_mv |
In this article we construct affine systems that provide a simultaneous atomic decomposition for a wide class of functional spaces including the Lebesgue spaces Lp(Rd), 1 < p < + ∞. The novelty and difficulty of this construction is that we allow for non-lattice translations.We prove that for an arbitrary expansive matrix A and any set Λ-satisfying a certain spreadness condition but otherwise irregular-there exists a smooth window whose translations along the elements of Λ and dilations by powers of A provide an atomic decomposition for the whole range of the anisotropic Triebel-Lizorkin spaces. The generating window can be either chosen to be bandlimited or to have compact support.To derive these results we start with a known general "painless" construction that has recently appeared in the literature. We show that this construction extends to Besov and Triebel-Lizorkin spaces by providing adequate dual systems. © 2012 Elsevier Ltd. Fil:Cabrelli, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Molter, U. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Romero, J.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
| description |
In this article we construct affine systems that provide a simultaneous atomic decomposition for a wide class of functional spaces including the Lebesgue spaces Lp(Rd), 1 < p < + ∞. The novelty and difficulty of this construction is that we allow for non-lattice translations.We prove that for an arbitrary expansive matrix A and any set Λ-satisfying a certain spreadness condition but otherwise irregular-there exists a smooth window whose translations along the elements of Λ and dilations by powers of A provide an atomic decomposition for the whole range of the anisotropic Triebel-Lizorkin spaces. The generating window can be either chosen to be bandlimited or to have compact support.To derive these results we start with a known general "painless" construction that has recently appeared in the literature. We show that this construction extends to Besov and Triebel-Lizorkin spaces by providing adequate dual systems. © 2012 Elsevier Ltd. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00018708_v232_n1_p98_Cabrelli |
| url |
http://hdl.handle.net/20.500.12110/paper_00018708_v232_n1_p98_Cabrelli |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
Adv. Math. 2013;232(1):98-120 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
| reponame_str |
Biblioteca Digital (UBA-FCEN) |
| collection |
Biblioteca Digital (UBA-FCEN) |
| instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| instacron_str |
UBA-FCEN |
| institution |
UBA-FCEN |
| repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
| _version_ |
1846784881070178304 |
| score |
12.982451 |