Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces

Autores
Cabrelli, C.; Molter, U.; Romero, J.L.
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this article we construct affine systems that provide a simultaneous atomic decomposition for a wide class of functional spaces including the Lebesgue spaces Lp(Rd), 1 < p < + ∞. The novelty and difficulty of this construction is that we allow for non-lattice translations.We prove that for an arbitrary expansive matrix A and any set Λ-satisfying a certain spreadness condition but otherwise irregular-there exists a smooth window whose translations along the elements of Λ and dilations by powers of A provide an atomic decomposition for the whole range of the anisotropic Triebel-Lizorkin spaces. The generating window can be either chosen to be bandlimited or to have compact support.To derive these results we start with a known general "painless" construction that has recently appeared in the literature. We show that this construction extends to Besov and Triebel-Lizorkin spaces by providing adequate dual systems. © 2012 Elsevier Ltd.
Fil:Cabrelli, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Molter, U. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Romero, J.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Adv. Math. 2013;232(1):98-120
Materia
Affine systems
Anisotropic function spaces
Besov spaces
Non-uniform atomic decomposition
Triebel-Lizorkin spaces
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00018708_v232_n1_p98_Cabrelli

id BDUBAFCEN_0e430c6c3b30a96df505a31e159a1a15
oai_identifier_str paperaa:paper_00018708_v232_n1_p98_Cabrelli
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spacesCabrelli, C.Molter, U.Romero, J.L.Affine systemsAnisotropic function spacesBesov spacesNon-uniform atomic decompositionTriebel-Lizorkin spacesIn this article we construct affine systems that provide a simultaneous atomic decomposition for a wide class of functional spaces including the Lebesgue spaces Lp(Rd), 1 < p < + ∞. The novelty and difficulty of this construction is that we allow for non-lattice translations.We prove that for an arbitrary expansive matrix A and any set Λ-satisfying a certain spreadness condition but otherwise irregular-there exists a smooth window whose translations along the elements of Λ and dilations by powers of A provide an atomic decomposition for the whole range of the anisotropic Triebel-Lizorkin spaces. The generating window can be either chosen to be bandlimited or to have compact support.To derive these results we start with a known general "painless" construction that has recently appeared in the literature. We show that this construction extends to Besov and Triebel-Lizorkin spaces by providing adequate dual systems. © 2012 Elsevier Ltd.Fil:Cabrelli, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Molter, U. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Romero, J.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00018708_v232_n1_p98_CabrelliAdv. Math. 2013;232(1):98-120reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:05Zpaperaa:paper_00018708_v232_n1_p98_CabrelliInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:07.042Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces
title Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces
spellingShingle Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces
Cabrelli, C.
Affine systems
Anisotropic function spaces
Besov spaces
Non-uniform atomic decomposition
Triebel-Lizorkin spaces
title_short Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces
title_full Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces
title_fullStr Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces
title_full_unstemmed Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces
title_sort Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces
dc.creator.none.fl_str_mv Cabrelli, C.
Molter, U.
Romero, J.L.
author Cabrelli, C.
author_facet Cabrelli, C.
Molter, U.
Romero, J.L.
author_role author
author2 Molter, U.
Romero, J.L.
author2_role author
author
dc.subject.none.fl_str_mv Affine systems
Anisotropic function spaces
Besov spaces
Non-uniform atomic decomposition
Triebel-Lizorkin spaces
topic Affine systems
Anisotropic function spaces
Besov spaces
Non-uniform atomic decomposition
Triebel-Lizorkin spaces
dc.description.none.fl_txt_mv In this article we construct affine systems that provide a simultaneous atomic decomposition for a wide class of functional spaces including the Lebesgue spaces Lp(Rd), 1 < p < + ∞. The novelty and difficulty of this construction is that we allow for non-lattice translations.We prove that for an arbitrary expansive matrix A and any set Λ-satisfying a certain spreadness condition but otherwise irregular-there exists a smooth window whose translations along the elements of Λ and dilations by powers of A provide an atomic decomposition for the whole range of the anisotropic Triebel-Lizorkin spaces. The generating window can be either chosen to be bandlimited or to have compact support.To derive these results we start with a known general "painless" construction that has recently appeared in the literature. We show that this construction extends to Besov and Triebel-Lizorkin spaces by providing adequate dual systems. © 2012 Elsevier Ltd.
Fil:Cabrelli, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Molter, U. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Romero, J.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description In this article we construct affine systems that provide a simultaneous atomic decomposition for a wide class of functional spaces including the Lebesgue spaces Lp(Rd), 1 < p < + ∞. The novelty and difficulty of this construction is that we allow for non-lattice translations.We prove that for an arbitrary expansive matrix A and any set Λ-satisfying a certain spreadness condition but otherwise irregular-there exists a smooth window whose translations along the elements of Λ and dilations by powers of A provide an atomic decomposition for the whole range of the anisotropic Triebel-Lizorkin spaces. The generating window can be either chosen to be bandlimited or to have compact support.To derive these results we start with a known general "painless" construction that has recently appeared in the literature. We show that this construction extends to Besov and Triebel-Lizorkin spaces by providing adequate dual systems. © 2012 Elsevier Ltd.
publishDate 2013
dc.date.none.fl_str_mv 2013
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00018708_v232_n1_p98_Cabrelli
url http://hdl.handle.net/20.500.12110/paper_00018708_v232_n1_p98_Cabrelli
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Adv. Math. 2013;232(1):98-120
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618739072368640
score 13.070432