T1 Theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type
- Autores
- Hartzstein, Silvia Inés; Viviani, Beatriz Eleonora
- Año de publicación
- 2000
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we extend the definition of the Besov and the Triebel-Lizorkinspaces in the context of spaces of homogeneous-type given by Han and Sawyer in[HS] . We consider, as a control of the ´local regularity ´ , functions phi(t) more general than the potentials t^alpha used in their case. We also state Tl-type theorems in these spaces. Our approach yields some new results for kernels satisfying integral regularity conditions
Fil: Hartzstein, Silvia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
BESOV SPACES
TRIEBEL_LIZORKING SPACES
T1 THEOREM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/99299
Ver los metadatos del registro completo
id |
CONICETDig_3496d03c36ef7b10fdd5747a21314955 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/99299 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
T1 Theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous typeHartzstein, Silvia InésViviani, Beatriz EleonoraBESOV SPACESTRIEBEL_LIZORKING SPACEST1 THEOREMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we extend the definition of the Besov and the Triebel-Lizorkinspaces in the context of spaces of homogeneous-type given by Han and Sawyer in[HS] . We consider, as a control of the ´local regularity ´ , functions phi(t) more general than the potentials t^alpha used in their case. We also state Tl-type theorems in these spaces. Our approach yields some new results for kernels satisfying integral regularity conditionsFil: Hartzstein, Silvia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaUnión Matemática Argentina2000-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/99299Hartzstein, Silvia Inés; Viviani, Beatriz Eleonora; T1 Theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 4-2000; 51-730041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v42n1/v42n1a05.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:45Zoai:ri.conicet.gov.ar:11336/99299instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:46.077CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
T1 Theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type |
title |
T1 Theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type |
spellingShingle |
T1 Theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type Hartzstein, Silvia Inés BESOV SPACES TRIEBEL_LIZORKING SPACES T1 THEOREM |
title_short |
T1 Theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type |
title_full |
T1 Theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type |
title_fullStr |
T1 Theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type |
title_full_unstemmed |
T1 Theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type |
title_sort |
T1 Theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type |
dc.creator.none.fl_str_mv |
Hartzstein, Silvia Inés Viviani, Beatriz Eleonora |
author |
Hartzstein, Silvia Inés |
author_facet |
Hartzstein, Silvia Inés Viviani, Beatriz Eleonora |
author_role |
author |
author2 |
Viviani, Beatriz Eleonora |
author2_role |
author |
dc.subject.none.fl_str_mv |
BESOV SPACES TRIEBEL_LIZORKING SPACES T1 THEOREM |
topic |
BESOV SPACES TRIEBEL_LIZORKING SPACES T1 THEOREM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we extend the definition of the Besov and the Triebel-Lizorkinspaces in the context of spaces of homogeneous-type given by Han and Sawyer in[HS] . We consider, as a control of the ´local regularity ´ , functions phi(t) more general than the potentials t^alpha used in their case. We also state Tl-type theorems in these spaces. Our approach yields some new results for kernels satisfying integral regularity conditions Fil: Hartzstein, Silvia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
description |
In this paper we extend the definition of the Besov and the Triebel-Lizorkinspaces in the context of spaces of homogeneous-type given by Han and Sawyer in[HS] . We consider, as a control of the ´local regularity ´ , functions phi(t) more general than the potentials t^alpha used in their case. We also state Tl-type theorems in these spaces. Our approach yields some new results for kernels satisfying integral regularity conditions |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/99299 Hartzstein, Silvia Inés; Viviani, Beatriz Eleonora; T1 Theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 4-2000; 51-73 0041-6932 1669-9637 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/99299 |
identifier_str_mv |
Hartzstein, Silvia Inés; Viviani, Beatriz Eleonora; T1 Theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 4-2000; 51-73 0041-6932 1669-9637 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v42n1/v42n1a05.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Unión Matemática Argentina |
publisher.none.fl_str_mv |
Unión Matemática Argentina |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613346524921856 |
score |
13.070432 |