T1 Theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type

Autores
Hartzstein, Silvia Inés; Viviani, Beatriz Eleonora
Año de publicación
2000
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we extend the definition of the Besov and the Triebel-Lizorkinspaces in the context of spaces of homogeneous-type given by Han and Sawyer in[HS] . We consider, as a control of the ´local regularity ´ , functions phi(t) more general than the potentials t^alpha used in their case. We also state Tl-type theorems in these spaces. Our approach yields some new results for kernels satisfying integral regularity conditions
Fil: Hartzstein, Silvia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Materia
BESOV SPACES
TRIEBEL_LIZORKING SPACES
T1 THEOREM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/99299

id CONICETDig_3496d03c36ef7b10fdd5747a21314955
oai_identifier_str oai:ri.conicet.gov.ar:11336/99299
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling T1 Theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous typeHartzstein, Silvia InésViviani, Beatriz EleonoraBESOV SPACESTRIEBEL_LIZORKING SPACEST1 THEOREMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we extend the definition of the Besov and the Triebel-Lizorkinspaces in the context of spaces of homogeneous-type given by Han and Sawyer in[HS] . We consider, as a control of the ´local regularity ´ , functions phi(t) more general than the potentials t^alpha used in their case. We also state Tl-type theorems in these spaces. Our approach yields some new results for kernels satisfying integral regularity conditionsFil: Hartzstein, Silvia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaUnión Matemática Argentina2000-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/99299Hartzstein, Silvia Inés; Viviani, Beatriz Eleonora; T1 Theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 4-2000; 51-730041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v42n1/v42n1a05.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:45Zoai:ri.conicet.gov.ar:11336/99299instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:46.077CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv T1 Theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type
title T1 Theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type
spellingShingle T1 Theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type
Hartzstein, Silvia Inés
BESOV SPACES
TRIEBEL_LIZORKING SPACES
T1 THEOREM
title_short T1 Theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type
title_full T1 Theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type
title_fullStr T1 Theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type
title_full_unstemmed T1 Theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type
title_sort T1 Theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type
dc.creator.none.fl_str_mv Hartzstein, Silvia Inés
Viviani, Beatriz Eleonora
author Hartzstein, Silvia Inés
author_facet Hartzstein, Silvia Inés
Viviani, Beatriz Eleonora
author_role author
author2 Viviani, Beatriz Eleonora
author2_role author
dc.subject.none.fl_str_mv BESOV SPACES
TRIEBEL_LIZORKING SPACES
T1 THEOREM
topic BESOV SPACES
TRIEBEL_LIZORKING SPACES
T1 THEOREM
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we extend the definition of the Besov and the Triebel-Lizorkinspaces in the context of spaces of homogeneous-type given by Han and Sawyer in[HS] . We consider, as a control of the ´local regularity ´ , functions phi(t) more general than the potentials t^alpha used in their case. We also state Tl-type theorems in these spaces. Our approach yields some new results for kernels satisfying integral regularity conditions
Fil: Hartzstein, Silvia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
description In this paper we extend the definition of the Besov and the Triebel-Lizorkinspaces in the context of spaces of homogeneous-type given by Han and Sawyer in[HS] . We consider, as a control of the ´local regularity ´ , functions phi(t) more general than the potentials t^alpha used in their case. We also state Tl-type theorems in these spaces. Our approach yields some new results for kernels satisfying integral regularity conditions
publishDate 2000
dc.date.none.fl_str_mv 2000-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/99299
Hartzstein, Silvia Inés; Viviani, Beatriz Eleonora; T1 Theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 4-2000; 51-73
0041-6932
1669-9637
CONICET Digital
CONICET
url http://hdl.handle.net/11336/99299
identifier_str_mv Hartzstein, Silvia Inés; Viviani, Beatriz Eleonora; T1 Theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 4-2000; 51-73
0041-6932
1669-9637
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v42n1/v42n1a05.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Unión Matemática Argentina
publisher.none.fl_str_mv Unión Matemática Argentina
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613346524921856
score 13.070432