Nonparametric estimation of a surrogate density function in infinite-dimensional spaces
- Autores
- Ferraty, Frédéric; Kudraszow, Nadia Laura; Vieu, Philippe
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A density function is generally not well defined in functional data context, but we can define a surrogate of a probability density, also called pseudo-density, when the small ball probability can be approximated by the product of two independent functions, one depending only on the centre of the ball. The aim of this paper is to study two kernel methods for estimating a surrogate probability density for functional data. We present asymptotic properties of these estimators: the convergence in probability and their rates. Simulations are given, including a functional version of smoother bootstrap selection of the parameters of the estimate.
Fil: Ferraty, Frédéric. Universite Paul Sabatier. Institut de Mathematiques de Toulouse; Francia
Fil: Kudraszow, Nadia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Vieu, Philippe. Universite Paul Sabatier. Institut de Mathematiques de Toulouse; Francia - Materia
-
Functional Data
K-Nearest Neighbour Method
Kernel Estimators
Small Ball Probability
Smoother Bootstrap - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/79667
Ver los metadatos del registro completo
id |
CONICETDig_ef3279a661820fefec20f83bc731dcde |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/79667 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Nonparametric estimation of a surrogate density function in infinite-dimensional spacesFerraty, FrédéricKudraszow, Nadia LauraVieu, PhilippeFunctional DataK-Nearest Neighbour MethodKernel EstimatorsSmall Ball ProbabilitySmoother Bootstraphttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A density function is generally not well defined in functional data context, but we can define a surrogate of a probability density, also called pseudo-density, when the small ball probability can be approximated by the product of two independent functions, one depending only on the centre of the ball. The aim of this paper is to study two kernel methods for estimating a surrogate probability density for functional data. We present asymptotic properties of these estimators: the convergence in probability and their rates. Simulations are given, including a functional version of smoother bootstrap selection of the parameters of the estimate.Fil: Ferraty, Frédéric. Universite Paul Sabatier. Institut de Mathematiques de Toulouse; FranciaFil: Kudraszow, Nadia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Vieu, Philippe. Universite Paul Sabatier. Institut de Mathematiques de Toulouse; FranciaTaylor & Francis Ltd2012-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/79667Ferraty, Frédéric; Kudraszow, Nadia Laura; Vieu, Philippe; Nonparametric estimation of a surrogate density function in infinite-dimensional spaces; Taylor & Francis Ltd; Journal Of Nonparametric Statistics; 24; 2; 6-2012; 447-4641048-52521029-0311CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/10485252.2012.671943info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/10485252.2012.671943info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:15:59Zoai:ri.conicet.gov.ar:11336/79667instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:15:59.823CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Nonparametric estimation of a surrogate density function in infinite-dimensional spaces |
title |
Nonparametric estimation of a surrogate density function in infinite-dimensional spaces |
spellingShingle |
Nonparametric estimation of a surrogate density function in infinite-dimensional spaces Ferraty, Frédéric Functional Data K-Nearest Neighbour Method Kernel Estimators Small Ball Probability Smoother Bootstrap |
title_short |
Nonparametric estimation of a surrogate density function in infinite-dimensional spaces |
title_full |
Nonparametric estimation of a surrogate density function in infinite-dimensional spaces |
title_fullStr |
Nonparametric estimation of a surrogate density function in infinite-dimensional spaces |
title_full_unstemmed |
Nonparametric estimation of a surrogate density function in infinite-dimensional spaces |
title_sort |
Nonparametric estimation of a surrogate density function in infinite-dimensional spaces |
dc.creator.none.fl_str_mv |
Ferraty, Frédéric Kudraszow, Nadia Laura Vieu, Philippe |
author |
Ferraty, Frédéric |
author_facet |
Ferraty, Frédéric Kudraszow, Nadia Laura Vieu, Philippe |
author_role |
author |
author2 |
Kudraszow, Nadia Laura Vieu, Philippe |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Functional Data K-Nearest Neighbour Method Kernel Estimators Small Ball Probability Smoother Bootstrap |
topic |
Functional Data K-Nearest Neighbour Method Kernel Estimators Small Ball Probability Smoother Bootstrap |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A density function is generally not well defined in functional data context, but we can define a surrogate of a probability density, also called pseudo-density, when the small ball probability can be approximated by the product of two independent functions, one depending only on the centre of the ball. The aim of this paper is to study two kernel methods for estimating a surrogate probability density for functional data. We present asymptotic properties of these estimators: the convergence in probability and their rates. Simulations are given, including a functional version of smoother bootstrap selection of the parameters of the estimate. Fil: Ferraty, Frédéric. Universite Paul Sabatier. Institut de Mathematiques de Toulouse; Francia Fil: Kudraszow, Nadia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina Fil: Vieu, Philippe. Universite Paul Sabatier. Institut de Mathematiques de Toulouse; Francia |
description |
A density function is generally not well defined in functional data context, but we can define a surrogate of a probability density, also called pseudo-density, when the small ball probability can be approximated by the product of two independent functions, one depending only on the centre of the ball. The aim of this paper is to study two kernel methods for estimating a surrogate probability density for functional data. We present asymptotic properties of these estimators: the convergence in probability and their rates. Simulations are given, including a functional version of smoother bootstrap selection of the parameters of the estimate. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/79667 Ferraty, Frédéric; Kudraszow, Nadia Laura; Vieu, Philippe; Nonparametric estimation of a surrogate density function in infinite-dimensional spaces; Taylor & Francis Ltd; Journal Of Nonparametric Statistics; 24; 2; 6-2012; 447-464 1048-5252 1029-0311 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/79667 |
identifier_str_mv |
Ferraty, Frédéric; Kudraszow, Nadia Laura; Vieu, Philippe; Nonparametric estimation of a surrogate density function in infinite-dimensional spaces; Taylor & Francis Ltd; Journal Of Nonparametric Statistics; 24; 2; 6-2012; 447-464 1048-5252 1029-0311 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1080/10485252.2012.671943 info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/10485252.2012.671943 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis Ltd |
publisher.none.fl_str_mv |
Taylor & Francis Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614100445822976 |
score |
13.070432 |