Bounded memory probabilistic mapping of out-of-structure objects in fruit crops environments
- Autores
- Gimenez Romero, Javier Alejandro; Tosetti Sanz, Santiago Ramon; Salinas, Lucio Rafael; Carelli Albarracin, Ricardo Oscar
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Spatial awareness and memory are key factors for a robot to evolve in semi-structured and dynamic environments as those found in agriculture, and particularly in fruit crops where the trees are regularly distributed. This paper proposes a probabilistic method for mapping out-of-structure objects (weeds, workers, machines, fallen branches, etc.) using a Kernel density estimator. The methodology has theoretical and practical advantages over the well-known occupancy grid map estimator such as optimization of storage resources, online update, high resolution, and straightforward adaptability to dynamic environments. An example application would be a control scheme through which a robot is able to perform cautious navigation in areas with high probability of finding obstacles. Simulations and experiments show that large extensions can be online mapped with few data and high spatial resolution.
Fil: Gimenez Romero, Javier Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Tosetti Sanz, Santiago Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Salinas, Lucio Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina - Materia
-
DYNAMIC OBJECT
KERNEL ESTIMATORS
PRECISION AGRICULTURE
PROBABILISTIC MAPPING
RECURSIVE SUBSAMPLING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/89230
Ver los metadatos del registro completo
id |
CONICETDig_0e662ce4783af221701c7b3c939eda40 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/89230 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Bounded memory probabilistic mapping of out-of-structure objects in fruit crops environmentsGimenez Romero, Javier AlejandroTosetti Sanz, Santiago RamonSalinas, Lucio RafaelCarelli Albarracin, Ricardo OscarDYNAMIC OBJECTKERNEL ESTIMATORSPRECISION AGRICULTUREPROBABILISTIC MAPPINGRECURSIVE SUBSAMPLINGhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Spatial awareness and memory are key factors for a robot to evolve in semi-structured and dynamic environments as those found in agriculture, and particularly in fruit crops where the trees are regularly distributed. This paper proposes a probabilistic method for mapping out-of-structure objects (weeds, workers, machines, fallen branches, etc.) using a Kernel density estimator. The methodology has theoretical and practical advantages over the well-known occupancy grid map estimator such as optimization of storage resources, online update, high resolution, and straightforward adaptability to dynamic environments. An example application would be a control scheme through which a robot is able to perform cautious navigation in areas with high probability of finding obstacles. Simulations and experiments show that large extensions can be online mapped with few data and high spatial resolution.Fil: Gimenez Romero, Javier Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Tosetti Sanz, Santiago Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Salinas, Lucio Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaElsevier2018-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89230Gimenez Romero, Javier Alejandro; Tosetti Sanz, Santiago Ramon; Salinas, Lucio Rafael; Carelli Albarracin, Ricardo Oscar; Bounded memory probabilistic mapping of out-of-structure objects in fruit crops environments; Elsevier; Computers and Eletronics in Agriculture; 151; 8-2018; 11-200168-1699CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0168169917313662info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compag.2018.05.018info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:03Zoai:ri.conicet.gov.ar:11336/89230instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:03.529CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Bounded memory probabilistic mapping of out-of-structure objects in fruit crops environments |
title |
Bounded memory probabilistic mapping of out-of-structure objects in fruit crops environments |
spellingShingle |
Bounded memory probabilistic mapping of out-of-structure objects in fruit crops environments Gimenez Romero, Javier Alejandro DYNAMIC OBJECT KERNEL ESTIMATORS PRECISION AGRICULTURE PROBABILISTIC MAPPING RECURSIVE SUBSAMPLING |
title_short |
Bounded memory probabilistic mapping of out-of-structure objects in fruit crops environments |
title_full |
Bounded memory probabilistic mapping of out-of-structure objects in fruit crops environments |
title_fullStr |
Bounded memory probabilistic mapping of out-of-structure objects in fruit crops environments |
title_full_unstemmed |
Bounded memory probabilistic mapping of out-of-structure objects in fruit crops environments |
title_sort |
Bounded memory probabilistic mapping of out-of-structure objects in fruit crops environments |
dc.creator.none.fl_str_mv |
Gimenez Romero, Javier Alejandro Tosetti Sanz, Santiago Ramon Salinas, Lucio Rafael Carelli Albarracin, Ricardo Oscar |
author |
Gimenez Romero, Javier Alejandro |
author_facet |
Gimenez Romero, Javier Alejandro Tosetti Sanz, Santiago Ramon Salinas, Lucio Rafael Carelli Albarracin, Ricardo Oscar |
author_role |
author |
author2 |
Tosetti Sanz, Santiago Ramon Salinas, Lucio Rafael Carelli Albarracin, Ricardo Oscar |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
DYNAMIC OBJECT KERNEL ESTIMATORS PRECISION AGRICULTURE PROBABILISTIC MAPPING RECURSIVE SUBSAMPLING |
topic |
DYNAMIC OBJECT KERNEL ESTIMATORS PRECISION AGRICULTURE PROBABILISTIC MAPPING RECURSIVE SUBSAMPLING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Spatial awareness and memory are key factors for a robot to evolve in semi-structured and dynamic environments as those found in agriculture, and particularly in fruit crops where the trees are regularly distributed. This paper proposes a probabilistic method for mapping out-of-structure objects (weeds, workers, machines, fallen branches, etc.) using a Kernel density estimator. The methodology has theoretical and practical advantages over the well-known occupancy grid map estimator such as optimization of storage resources, online update, high resolution, and straightforward adaptability to dynamic environments. An example application would be a control scheme through which a robot is able to perform cautious navigation in areas with high probability of finding obstacles. Simulations and experiments show that large extensions can be online mapped with few data and high spatial resolution. Fil: Gimenez Romero, Javier Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Tosetti Sanz, Santiago Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Salinas, Lucio Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina |
description |
Spatial awareness and memory are key factors for a robot to evolve in semi-structured and dynamic environments as those found in agriculture, and particularly in fruit crops where the trees are regularly distributed. This paper proposes a probabilistic method for mapping out-of-structure objects (weeds, workers, machines, fallen branches, etc.) using a Kernel density estimator. The methodology has theoretical and practical advantages over the well-known occupancy grid map estimator such as optimization of storage resources, online update, high resolution, and straightforward adaptability to dynamic environments. An example application would be a control scheme through which a robot is able to perform cautious navigation in areas with high probability of finding obstacles. Simulations and experiments show that large extensions can be online mapped with few data and high spatial resolution. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/89230 Gimenez Romero, Javier Alejandro; Tosetti Sanz, Santiago Ramon; Salinas, Lucio Rafael; Carelli Albarracin, Ricardo Oscar; Bounded memory probabilistic mapping of out-of-structure objects in fruit crops environments; Elsevier; Computers and Eletronics in Agriculture; 151; 8-2018; 11-20 0168-1699 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/89230 |
identifier_str_mv |
Gimenez Romero, Javier Alejandro; Tosetti Sanz, Santiago Ramon; Salinas, Lucio Rafael; Carelli Albarracin, Ricardo Oscar; Bounded memory probabilistic mapping of out-of-structure objects in fruit crops environments; Elsevier; Computers and Eletronics in Agriculture; 151; 8-2018; 11-20 0168-1699 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0168169917313662 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compag.2018.05.018 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613201951457280 |
score |
13.070432 |