Insights into bootstrap percolation: Its equivalence with k-core percolation and the giant component
- Autores
- Di Muro, Matias Alberto; Valdez, Lucas Daniel; Stanley, Harry Eugene; Buldyrev, Sergey V.; Braunstein, Lidia Adriana
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- K-core and bootstrap percolation are widely studied models that have been used to represent and understand diverse deactivation and activation processes in natural and social systems. Since these models are considerably similar, it has been suggested in recent years that they could be complementary. In this manuscript we provide a rigorous analysis that shows that for any degree and threshold distributions heterogeneous bootstrap percolation can be mapped into heterogeneous k-core percolation and vice versa, if the functionality thresholds in both processes satisfy a complementary relation. Another interesting problem in bootstrap and k-core percolation is the fraction of nodes belonging to their giant connected components P∞b and P∞c, respectively. We solve this problem analytically for arbitrary randomly connected graphs and arbitrary threshold distributions, and we show that P∞b and P∞c are not complementary. Our theoretical results coincide with computer simulations in the limit of very large graphs. In bootstrap percolation, we show that when using the branching theory to compute the size of the giant component, we must consider two different types of links, which are related to distinct spanning branches of active nodes.
Fil: Di Muro, Matias Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Valdez, Lucas Daniel. Boston University; Estados Unidos
Fil: Stanley, Harry Eugene. Boston University; Estados Unidos
Fil: Buldyrev, Sergey V.. Yeshiva University; Estados Unidos
Fil: Braunstein, Lidia Adriana. Politecnico di Milano; Italia - Materia
-
Complex Networks
Percolation
Bootstrap
k-core - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/122919
Ver los metadatos del registro completo
id |
CONICETDig_ed2bbf9e6f6c7380c6e8e471fc0e142a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/122919 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Insights into bootstrap percolation: Its equivalence with k-core percolation and the giant componentDi Muro, Matias AlbertoValdez, Lucas DanielStanley, Harry EugeneBuldyrev, Sergey V.Braunstein, Lidia AdrianaComplex NetworksPercolationBootstrapk-corehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1K-core and bootstrap percolation are widely studied models that have been used to represent and understand diverse deactivation and activation processes in natural and social systems. Since these models are considerably similar, it has been suggested in recent years that they could be complementary. In this manuscript we provide a rigorous analysis that shows that for any degree and threshold distributions heterogeneous bootstrap percolation can be mapped into heterogeneous k-core percolation and vice versa, if the functionality thresholds in both processes satisfy a complementary relation. Another interesting problem in bootstrap and k-core percolation is the fraction of nodes belonging to their giant connected components P∞b and P∞c, respectively. We solve this problem analytically for arbitrary randomly connected graphs and arbitrary threshold distributions, and we show that P∞b and P∞c are not complementary. Our theoretical results coincide with computer simulations in the limit of very large graphs. In bootstrap percolation, we show that when using the branching theory to compute the size of the giant component, we must consider two different types of links, which are related to distinct spanning branches of active nodes.Fil: Di Muro, Matias Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Valdez, Lucas Daniel. Boston University; Estados UnidosFil: Stanley, Harry Eugene. Boston University; Estados UnidosFil: Buldyrev, Sergey V.. Yeshiva University; Estados UnidosFil: Braunstein, Lidia Adriana. Politecnico di Milano; ItaliaAmerican Physical Society2019-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/122919Di Muro, Matias Alberto; Valdez, Lucas Daniel; Stanley, Harry Eugene; Buldyrev, Sergey V.; Braunstein, Lidia Adriana; Insights into bootstrap percolation: Its equivalence with k-core percolation and the giant component; American Physical Society; Physical Review E; 99; 2; 2-20192470-0045CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevE.99.022311info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.99.022311info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:57Zoai:ri.conicet.gov.ar:11336/122919instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:57.653CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Insights into bootstrap percolation: Its equivalence with k-core percolation and the giant component |
title |
Insights into bootstrap percolation: Its equivalence with k-core percolation and the giant component |
spellingShingle |
Insights into bootstrap percolation: Its equivalence with k-core percolation and the giant component Di Muro, Matias Alberto Complex Networks Percolation Bootstrap k-core |
title_short |
Insights into bootstrap percolation: Its equivalence with k-core percolation and the giant component |
title_full |
Insights into bootstrap percolation: Its equivalence with k-core percolation and the giant component |
title_fullStr |
Insights into bootstrap percolation: Its equivalence with k-core percolation and the giant component |
title_full_unstemmed |
Insights into bootstrap percolation: Its equivalence with k-core percolation and the giant component |
title_sort |
Insights into bootstrap percolation: Its equivalence with k-core percolation and the giant component |
dc.creator.none.fl_str_mv |
Di Muro, Matias Alberto Valdez, Lucas Daniel Stanley, Harry Eugene Buldyrev, Sergey V. Braunstein, Lidia Adriana |
author |
Di Muro, Matias Alberto |
author_facet |
Di Muro, Matias Alberto Valdez, Lucas Daniel Stanley, Harry Eugene Buldyrev, Sergey V. Braunstein, Lidia Adriana |
author_role |
author |
author2 |
Valdez, Lucas Daniel Stanley, Harry Eugene Buldyrev, Sergey V. Braunstein, Lidia Adriana |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Complex Networks Percolation Bootstrap k-core |
topic |
Complex Networks Percolation Bootstrap k-core |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
K-core and bootstrap percolation are widely studied models that have been used to represent and understand diverse deactivation and activation processes in natural and social systems. Since these models are considerably similar, it has been suggested in recent years that they could be complementary. In this manuscript we provide a rigorous analysis that shows that for any degree and threshold distributions heterogeneous bootstrap percolation can be mapped into heterogeneous k-core percolation and vice versa, if the functionality thresholds in both processes satisfy a complementary relation. Another interesting problem in bootstrap and k-core percolation is the fraction of nodes belonging to their giant connected components P∞b and P∞c, respectively. We solve this problem analytically for arbitrary randomly connected graphs and arbitrary threshold distributions, and we show that P∞b and P∞c are not complementary. Our theoretical results coincide with computer simulations in the limit of very large graphs. In bootstrap percolation, we show that when using the branching theory to compute the size of the giant component, we must consider two different types of links, which are related to distinct spanning branches of active nodes. Fil: Di Muro, Matias Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina Fil: Valdez, Lucas Daniel. Boston University; Estados Unidos Fil: Stanley, Harry Eugene. Boston University; Estados Unidos Fil: Buldyrev, Sergey V.. Yeshiva University; Estados Unidos Fil: Braunstein, Lidia Adriana. Politecnico di Milano; Italia |
description |
K-core and bootstrap percolation are widely studied models that have been used to represent and understand diverse deactivation and activation processes in natural and social systems. Since these models are considerably similar, it has been suggested in recent years that they could be complementary. In this manuscript we provide a rigorous analysis that shows that for any degree and threshold distributions heterogeneous bootstrap percolation can be mapped into heterogeneous k-core percolation and vice versa, if the functionality thresholds in both processes satisfy a complementary relation. Another interesting problem in bootstrap and k-core percolation is the fraction of nodes belonging to their giant connected components P∞b and P∞c, respectively. We solve this problem analytically for arbitrary randomly connected graphs and arbitrary threshold distributions, and we show that P∞b and P∞c are not complementary. Our theoretical results coincide with computer simulations in the limit of very large graphs. In bootstrap percolation, we show that when using the branching theory to compute the size of the giant component, we must consider two different types of links, which are related to distinct spanning branches of active nodes. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/122919 Di Muro, Matias Alberto; Valdez, Lucas Daniel; Stanley, Harry Eugene; Buldyrev, Sergey V.; Braunstein, Lidia Adriana; Insights into bootstrap percolation: Its equivalence with k-core percolation and the giant component; American Physical Society; Physical Review E; 99; 2; 2-2019 2470-0045 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/122919 |
identifier_str_mv |
Di Muro, Matias Alberto; Valdez, Lucas Daniel; Stanley, Harry Eugene; Buldyrev, Sergey V.; Braunstein, Lidia Adriana; Insights into bootstrap percolation: Its equivalence with k-core percolation and the giant component; American Physical Society; Physical Review E; 99; 2; 2-2019 2470-0045 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevE.99.022311 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.99.022311 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269936223780864 |
score |
13.13397 |