A combinatorial identity and applications
- Autores
- Ferrari, Mariano Andrés; Panzone, Pablo Andres
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- An identity for the finite sum 1^N rac{z^n}{q^n-r} is given. Related sums (or series) were studied by Scherk, Clausen, Ramanujan, Shanks, Andrews and others. We use such identity to give new formulas for sum_1^infty rac{z^n}{q^n-r}, the Riemann zeta function and Euler-Mascheroni constant. An irrationality result is also proved.
Fil: Ferrari, Mariano Andrés. Universidad Nacional de la Patagonia; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; Argentina;
Fil: Panzone, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina; Universidad Nacional del Sur; Argentina; - Materia
-
COMBINATORIAL IDENTITY
IRRATIONALITIES
RIEMANN ZETA FUNCTION
EULER-MASCHERONI CONSTANT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/1942
Ver los metadatos del registro completo
id |
CONICETDig_15362bacbf1e8e1834579590ed5cb7e0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/1942 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A combinatorial identity and applicationsFerrari, Mariano AndrésPanzone, Pablo AndresCOMBINATORIAL IDENTITYIRRATIONALITIESRIEMANN ZETA FUNCTIONEULER-MASCHERONI CONSTANThttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1An identity for the finite sum 1^N rac{z^n}{q^n-r} is given. Related sums (or series) were studied by Scherk, Clausen, Ramanujan, Shanks, Andrews and others. We use such identity to give new formulas for sum_1^infty rac{z^n}{q^n-r}, the Riemann zeta function and Euler-Mascheroni constant. An irrationality result is also proved.Fil: Ferrari, Mariano Andrés. Universidad Nacional de la Patagonia; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; Argentina;Fil: Panzone, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina; Universidad Nacional del Sur; Argentina;Unión Matemática Argentina2013-05-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/1942Ferrari, Mariano Andrés; Panzone, Pablo Andres; A combinatorial identity and applications; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 54; 1; 29-5-2013; 35-420041-69321669-9637enginfo:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v54n1/v54n1a04.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:13:28Zoai:ri.conicet.gov.ar:11336/1942instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:13:28.723CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A combinatorial identity and applications |
title |
A combinatorial identity and applications |
spellingShingle |
A combinatorial identity and applications Ferrari, Mariano Andrés COMBINATORIAL IDENTITY IRRATIONALITIES RIEMANN ZETA FUNCTION EULER-MASCHERONI CONSTANT |
title_short |
A combinatorial identity and applications |
title_full |
A combinatorial identity and applications |
title_fullStr |
A combinatorial identity and applications |
title_full_unstemmed |
A combinatorial identity and applications |
title_sort |
A combinatorial identity and applications |
dc.creator.none.fl_str_mv |
Ferrari, Mariano Andrés Panzone, Pablo Andres |
author |
Ferrari, Mariano Andrés |
author_facet |
Ferrari, Mariano Andrés Panzone, Pablo Andres |
author_role |
author |
author2 |
Panzone, Pablo Andres |
author2_role |
author |
dc.subject.none.fl_str_mv |
COMBINATORIAL IDENTITY IRRATIONALITIES RIEMANN ZETA FUNCTION EULER-MASCHERONI CONSTANT |
topic |
COMBINATORIAL IDENTITY IRRATIONALITIES RIEMANN ZETA FUNCTION EULER-MASCHERONI CONSTANT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
An identity for the finite sum 1^N rac{z^n}{q^n-r} is given. Related sums (or series) were studied by Scherk, Clausen, Ramanujan, Shanks, Andrews and others. We use such identity to give new formulas for sum_1^infty rac{z^n}{q^n-r}, the Riemann zeta function and Euler-Mascheroni constant. An irrationality result is also proved. Fil: Ferrari, Mariano Andrés. Universidad Nacional de la Patagonia; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; Argentina; Fil: Panzone, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina; Universidad Nacional del Sur; Argentina; |
description |
An identity for the finite sum 1^N rac{z^n}{q^n-r} is given. Related sums (or series) were studied by Scherk, Clausen, Ramanujan, Shanks, Andrews and others. We use such identity to give new formulas for sum_1^infty rac{z^n}{q^n-r}, the Riemann zeta function and Euler-Mascheroni constant. An irrationality result is also proved. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-05-29 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/1942 Ferrari, Mariano Andrés; Panzone, Pablo Andres; A combinatorial identity and applications; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 54; 1; 29-5-2013; 35-42 0041-6932 1669-9637 |
url |
http://hdl.handle.net/11336/1942 |
identifier_str_mv |
Ferrari, Mariano Andrés; Panzone, Pablo Andres; A combinatorial identity and applications; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 54; 1; 29-5-2013; 35-42 0041-6932 1669-9637 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v54n1/v54n1a04.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Unión Matemática Argentina |
publisher.none.fl_str_mv |
Unión Matemática Argentina |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614051926114304 |
score |
13.070432 |