Calderón weights as Muckenhoupt weights
- Autores
- Duoandikoextea, Javier; Martín Reyes, Francisco Javier; Ombrosi, Sheldy Javier
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Calderón operator S is the sum of the the Hardy averaging operator and its adjoint. The weights w for which S is bounded on L p(w) are the Calderón weights of the class Cp. We prove a characterization of the weights in Cp by a single condition which allows us to see that Cp is the class of Muckenhoupt weights associated with a maximal operator defined through a basis in (0,∞). The same condition characterizes the weighted weak-type inequalities for 1 < p < ∞, but that the weights for the strong type and the weak type differ for p = 1. We also prove that the weights in Cp do not behave like the usual Ap weights with respect to some properties and, in particular, we answer an open question on extrapolation for Muckenhoupt bases without the openness property.
Fil: Duoandikoextea, Javier. Universidad del Pais Vasco; España
Fil: Martín Reyes, Francisco Javier. Universidad de Malaga; España
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina - Materia
-
CALDERÓN OPERATOR
MAXIMAL OPERATOR
MUCKENHOUPT BASES
WEIGHTED INEQUALITIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/11929
Ver los metadatos del registro completo
id |
CONICETDig_ee941ac0f71284f8cc4c5e9846b52c26 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/11929 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Calderón weights as Muckenhoupt weightsDuoandikoextea, JavierMartín Reyes, Francisco JavierOmbrosi, Sheldy JavierCALDERÓN OPERATORMAXIMAL OPERATORMUCKENHOUPT BASESWEIGHTED INEQUALITIEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The Calderón operator S is the sum of the the Hardy averaging operator and its adjoint. The weights w for which S is bounded on L p(w) are the Calderón weights of the class Cp. We prove a characterization of the weights in Cp by a single condition which allows us to see that Cp is the class of Muckenhoupt weights associated with a maximal operator defined through a basis in (0,∞). The same condition characterizes the weighted weak-type inequalities for 1 < p < ∞, but that the weights for the strong type and the weak type differ for p = 1. We also prove that the weights in Cp do not behave like the usual Ap weights with respect to some properties and, in particular, we answer an open question on extrapolation for Muckenhoupt bases without the openness property.Fil: Duoandikoextea, Javier. Universidad del Pais Vasco; EspañaFil: Martín Reyes, Francisco Javier. Universidad de Malaga; EspañaFil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaIndiana University2013-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11929Duoandikoextea, Javier; Martín Reyes, Francisco Javier; Ombrosi, Sheldy Javier; Calderón weights as Muckenhoupt weights; Indiana University; Indiana University Mathematics Journal; 62; 3; 9-2013; 891-9100022-2518enginfo:eu-repo/semantics/altIdentifier/url/http://www.iumj.indiana.edu/oai/2013/62/4971/4971.xmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:46Zoai:ri.conicet.gov.ar:11336/11929instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:46.518CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Calderón weights as Muckenhoupt weights |
title |
Calderón weights as Muckenhoupt weights |
spellingShingle |
Calderón weights as Muckenhoupt weights Duoandikoextea, Javier CALDERÓN OPERATOR MAXIMAL OPERATOR MUCKENHOUPT BASES WEIGHTED INEQUALITIES |
title_short |
Calderón weights as Muckenhoupt weights |
title_full |
Calderón weights as Muckenhoupt weights |
title_fullStr |
Calderón weights as Muckenhoupt weights |
title_full_unstemmed |
Calderón weights as Muckenhoupt weights |
title_sort |
Calderón weights as Muckenhoupt weights |
dc.creator.none.fl_str_mv |
Duoandikoextea, Javier Martín Reyes, Francisco Javier Ombrosi, Sheldy Javier |
author |
Duoandikoextea, Javier |
author_facet |
Duoandikoextea, Javier Martín Reyes, Francisco Javier Ombrosi, Sheldy Javier |
author_role |
author |
author2 |
Martín Reyes, Francisco Javier Ombrosi, Sheldy Javier |
author2_role |
author author |
dc.subject.none.fl_str_mv |
CALDERÓN OPERATOR MAXIMAL OPERATOR MUCKENHOUPT BASES WEIGHTED INEQUALITIES |
topic |
CALDERÓN OPERATOR MAXIMAL OPERATOR MUCKENHOUPT BASES WEIGHTED INEQUALITIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The Calderón operator S is the sum of the the Hardy averaging operator and its adjoint. The weights w for which S is bounded on L p(w) are the Calderón weights of the class Cp. We prove a characterization of the weights in Cp by a single condition which allows us to see that Cp is the class of Muckenhoupt weights associated with a maximal operator defined through a basis in (0,∞). The same condition characterizes the weighted weak-type inequalities for 1 < p < ∞, but that the weights for the strong type and the weak type differ for p = 1. We also prove that the weights in Cp do not behave like the usual Ap weights with respect to some properties and, in particular, we answer an open question on extrapolation for Muckenhoupt bases without the openness property. Fil: Duoandikoextea, Javier. Universidad del Pais Vasco; España Fil: Martín Reyes, Francisco Javier. Universidad de Malaga; España Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina |
description |
The Calderón operator S is the sum of the the Hardy averaging operator and its adjoint. The weights w for which S is bounded on L p(w) are the Calderón weights of the class Cp. We prove a characterization of the weights in Cp by a single condition which allows us to see that Cp is the class of Muckenhoupt weights associated with a maximal operator defined through a basis in (0,∞). The same condition characterizes the weighted weak-type inequalities for 1 < p < ∞, but that the weights for the strong type and the weak type differ for p = 1. We also prove that the weights in Cp do not behave like the usual Ap weights with respect to some properties and, in particular, we answer an open question on extrapolation for Muckenhoupt bases without the openness property. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/11929 Duoandikoextea, Javier; Martín Reyes, Francisco Javier; Ombrosi, Sheldy Javier; Calderón weights as Muckenhoupt weights; Indiana University; Indiana University Mathematics Journal; 62; 3; 9-2013; 891-910 0022-2518 |
url |
http://hdl.handle.net/11336/11929 |
identifier_str_mv |
Duoandikoextea, Javier; Martín Reyes, Francisco Javier; Ombrosi, Sheldy Javier; Calderón weights as Muckenhoupt weights; Indiana University; Indiana University Mathematics Journal; 62; 3; 9-2013; 891-910 0022-2518 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.iumj.indiana.edu/oai/2013/62/4971/4971.xml |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Indiana University |
publisher.none.fl_str_mv |
Indiana University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269540222763008 |
score |
13.13397 |