Continuous and localized Riesz bases for spaces defined by Muckenhoupt weights
- Autores
- Aimar, Hugo Alejandro; Ramos, Wilfredo Ariel
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let w be an A∞-Muckenhoupt weight in R. Let L2(wdx) denote the space of square integrable real functions with the measure w(x)dx and the weighted scalar product f, g w = R f g wdx. By regularization of an unbalanced Haar system in L2(wdx) we construct absolutely continuous Riesz bases with supports as close to the dyadic intervals as desired. Also the Riesz bounds can be chosen as close to 1 as desired. The main tool used in the proof is Cotlar’s Lemma.
Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada ; Argentina
Fil: Ramos, Wilfredo Ariel. Universidad Nacional del Nordeste. Facultad de Cs.exactas Naturales y Agrimensura. Departamento de Matematica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada ; Argentina - Materia
-
Riesz Bases
Haar Wavelets, Basis Perturbations
Muckenhoupt Weights
Cotlars Lemma - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15188
Ver los metadatos del registro completo
id |
CONICETDig_2e77ea94b95dcc88456c42a66ef23231 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15188 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Continuous and localized Riesz bases for spaces defined by Muckenhoupt weightsAimar, Hugo AlejandroRamos, Wilfredo ArielRiesz BasesHaar Wavelets, Basis PerturbationsMuckenhoupt WeightsCotlars Lemmahttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let w be an A∞-Muckenhoupt weight in R. Let L2(wdx) denote the space of square integrable real functions with the measure w(x)dx and the weighted scalar product f, g w = R f g wdx. By regularization of an unbalanced Haar system in L2(wdx) we construct absolutely continuous Riesz bases with supports as close to the dyadic intervals as desired. Also the Riesz bounds can be chosen as close to 1 as desired. The main tool used in the proof is Cotlar’s Lemma.Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada ; ArgentinaFil: Ramos, Wilfredo Ariel. Universidad Nacional del Nordeste. Facultad de Cs.exactas Naturales y Agrimensura. Departamento de Matematica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada ; ArgentinaElsevier2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15188Aimar, Hugo Alejandro; Ramos, Wilfredo Ariel; Continuous and localized Riesz bases for spaces defined by Muckenhoupt weights; Elsevier; Journal Of Mathematical Analysis And Applications; 430; 1; 10-2015; 417-4270022-247Xenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X15004461info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2015.05.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:29Zoai:ri.conicet.gov.ar:11336/15188instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:29.669CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Continuous and localized Riesz bases for spaces defined by Muckenhoupt weights |
title |
Continuous and localized Riesz bases for spaces defined by Muckenhoupt weights |
spellingShingle |
Continuous and localized Riesz bases for spaces defined by Muckenhoupt weights Aimar, Hugo Alejandro Riesz Bases Haar Wavelets, Basis Perturbations Muckenhoupt Weights Cotlars Lemma |
title_short |
Continuous and localized Riesz bases for spaces defined by Muckenhoupt weights |
title_full |
Continuous and localized Riesz bases for spaces defined by Muckenhoupt weights |
title_fullStr |
Continuous and localized Riesz bases for spaces defined by Muckenhoupt weights |
title_full_unstemmed |
Continuous and localized Riesz bases for spaces defined by Muckenhoupt weights |
title_sort |
Continuous and localized Riesz bases for spaces defined by Muckenhoupt weights |
dc.creator.none.fl_str_mv |
Aimar, Hugo Alejandro Ramos, Wilfredo Ariel |
author |
Aimar, Hugo Alejandro |
author_facet |
Aimar, Hugo Alejandro Ramos, Wilfredo Ariel |
author_role |
author |
author2 |
Ramos, Wilfredo Ariel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Riesz Bases Haar Wavelets, Basis Perturbations Muckenhoupt Weights Cotlars Lemma |
topic |
Riesz Bases Haar Wavelets, Basis Perturbations Muckenhoupt Weights Cotlars Lemma |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let w be an A∞-Muckenhoupt weight in R. Let L2(wdx) denote the space of square integrable real functions with the measure w(x)dx and the weighted scalar product f, g w = R f g wdx. By regularization of an unbalanced Haar system in L2(wdx) we construct absolutely continuous Riesz bases with supports as close to the dyadic intervals as desired. Also the Riesz bounds can be chosen as close to 1 as desired. The main tool used in the proof is Cotlar’s Lemma. Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada ; Argentina Fil: Ramos, Wilfredo Ariel. Universidad Nacional del Nordeste. Facultad de Cs.exactas Naturales y Agrimensura. Departamento de Matematica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada ; Argentina |
description |
Let w be an A∞-Muckenhoupt weight in R. Let L2(wdx) denote the space of square integrable real functions with the measure w(x)dx and the weighted scalar product f, g w = R f g wdx. By regularization of an unbalanced Haar system in L2(wdx) we construct absolutely continuous Riesz bases with supports as close to the dyadic intervals as desired. Also the Riesz bounds can be chosen as close to 1 as desired. The main tool used in the proof is Cotlar’s Lemma. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15188 Aimar, Hugo Alejandro; Ramos, Wilfredo Ariel; Continuous and localized Riesz bases for spaces defined by Muckenhoupt weights; Elsevier; Journal Of Mathematical Analysis And Applications; 430; 1; 10-2015; 417-427 0022-247X |
url |
http://hdl.handle.net/11336/15188 |
identifier_str_mv |
Aimar, Hugo Alejandro; Ramos, Wilfredo Ariel; Continuous and localized Riesz bases for spaces defined by Muckenhoupt weights; Elsevier; Journal Of Mathematical Analysis And Applications; 430; 1; 10-2015; 417-427 0022-247X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X15004461 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2015.05.003 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269523438206976 |
score |
13.13397 |