Continuous and localized Riesz bases for spaces defined by Muckenhoupt weights

Autores
Aimar, Hugo Alejandro; Ramos, Wilfredo Ariel
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let w be an A∞-Muckenhoupt weight in R. Let L2(wdx) denote the space of square integrable real functions with the measure w(x)dx and the weighted scalar product f, g w = R f g wdx. By regularization of an unbalanced Haar system in L2(wdx) we construct absolutely continuous Riesz bases with supports as close to the dyadic intervals as desired. Also the Riesz bounds can be chosen as close to 1 as desired. The main tool used in the proof is Cotlar’s Lemma.
Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada ; Argentina
Fil: Ramos, Wilfredo Ariel. Universidad Nacional del Nordeste. Facultad de Cs.exactas Naturales y Agrimensura. Departamento de Matematica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada ; Argentina
Materia
Riesz Bases
Haar Wavelets, Basis Perturbations
Muckenhoupt Weights
Cotlars Lemma
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/15188

id CONICETDig_2e77ea94b95dcc88456c42a66ef23231
oai_identifier_str oai:ri.conicet.gov.ar:11336/15188
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Continuous and localized Riesz bases for spaces defined by Muckenhoupt weightsAimar, Hugo AlejandroRamos, Wilfredo ArielRiesz BasesHaar Wavelets, Basis PerturbationsMuckenhoupt WeightsCotlars Lemmahttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let w be an A∞-Muckenhoupt weight in R. Let L2(wdx) denote the space of square integrable real functions with the measure w(x)dx and the weighted scalar product f, g w = R f g wdx. By regularization of an unbalanced Haar system in L2(wdx) we construct absolutely continuous Riesz bases with supports as close to the dyadic intervals as desired. Also the Riesz bounds can be chosen as close to 1 as desired. The main tool used in the proof is Cotlar’s Lemma.Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada ; ArgentinaFil: Ramos, Wilfredo Ariel. Universidad Nacional del Nordeste. Facultad de Cs.exactas Naturales y Agrimensura. Departamento de Matematica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada ; ArgentinaElsevier2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15188Aimar, Hugo Alejandro; Ramos, Wilfredo Ariel; Continuous and localized Riesz bases for spaces defined by Muckenhoupt weights; Elsevier; Journal Of Mathematical Analysis And Applications; 430; 1; 10-2015; 417-4270022-247Xenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X15004461info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2015.05.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:29Zoai:ri.conicet.gov.ar:11336/15188instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:29.669CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Continuous and localized Riesz bases for spaces defined by Muckenhoupt weights
title Continuous and localized Riesz bases for spaces defined by Muckenhoupt weights
spellingShingle Continuous and localized Riesz bases for spaces defined by Muckenhoupt weights
Aimar, Hugo Alejandro
Riesz Bases
Haar Wavelets, Basis Perturbations
Muckenhoupt Weights
Cotlars Lemma
title_short Continuous and localized Riesz bases for spaces defined by Muckenhoupt weights
title_full Continuous and localized Riesz bases for spaces defined by Muckenhoupt weights
title_fullStr Continuous and localized Riesz bases for spaces defined by Muckenhoupt weights
title_full_unstemmed Continuous and localized Riesz bases for spaces defined by Muckenhoupt weights
title_sort Continuous and localized Riesz bases for spaces defined by Muckenhoupt weights
dc.creator.none.fl_str_mv Aimar, Hugo Alejandro
Ramos, Wilfredo Ariel
author Aimar, Hugo Alejandro
author_facet Aimar, Hugo Alejandro
Ramos, Wilfredo Ariel
author_role author
author2 Ramos, Wilfredo Ariel
author2_role author
dc.subject.none.fl_str_mv Riesz Bases
Haar Wavelets, Basis Perturbations
Muckenhoupt Weights
Cotlars Lemma
topic Riesz Bases
Haar Wavelets, Basis Perturbations
Muckenhoupt Weights
Cotlars Lemma
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let w be an A∞-Muckenhoupt weight in R. Let L2(wdx) denote the space of square integrable real functions with the measure w(x)dx and the weighted scalar product f, g w = R f g wdx. By regularization of an unbalanced Haar system in L2(wdx) we construct absolutely continuous Riesz bases with supports as close to the dyadic intervals as desired. Also the Riesz bounds can be chosen as close to 1 as desired. The main tool used in the proof is Cotlar’s Lemma.
Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada ; Argentina
Fil: Ramos, Wilfredo Ariel. Universidad Nacional del Nordeste. Facultad de Cs.exactas Naturales y Agrimensura. Departamento de Matematica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada ; Argentina
description Let w be an A∞-Muckenhoupt weight in R. Let L2(wdx) denote the space of square integrable real functions with the measure w(x)dx and the weighted scalar product f, g w = R f g wdx. By regularization of an unbalanced Haar system in L2(wdx) we construct absolutely continuous Riesz bases with supports as close to the dyadic intervals as desired. Also the Riesz bounds can be chosen as close to 1 as desired. The main tool used in the proof is Cotlar’s Lemma.
publishDate 2015
dc.date.none.fl_str_mv 2015-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/15188
Aimar, Hugo Alejandro; Ramos, Wilfredo Ariel; Continuous and localized Riesz bases for spaces defined by Muckenhoupt weights; Elsevier; Journal Of Mathematical Analysis And Applications; 430; 1; 10-2015; 417-427
0022-247X
url http://hdl.handle.net/11336/15188
identifier_str_mv Aimar, Hugo Alejandro; Ramos, Wilfredo Ariel; Continuous and localized Riesz bases for spaces defined by Muckenhoupt weights; Elsevier; Journal Of Mathematical Analysis And Applications; 430; 1; 10-2015; 417-427
0022-247X
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X15004461
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2015.05.003
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269523438206976
score 13.13397