Robust smoothed canonical correlation analysis for functional data
- Autores
- Boente Boente, Graciela Lina; Kudraszow, Nadia Laura
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper provides robust estimators for the first canonical correlation anddirections of random elements on Hilbert separable spaces by using robust association and scale measures combined with basis expansion and/or penalizations as a regularization tool. Under regularity conditions, the resulting estimators are consistent. The finitesample performance of our proposal is illustrated through a simulation study that showsthat, as expected, the robust method outperforms the existing classical procedure whenthe data are contaminated. A real data example is also presented.
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Universidad de Buenos Aires; Argentina
Fil: Kudraszow, Nadia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; Argentina - Materia
-
CANONICAL CORRELATION ANALYSIS
FUNCTIONAL DATA
ROBUST ESTIMATION
SMOOTHING TECHNIQUES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/143226
Ver los metadatos del registro completo
| id |
CONICETDig_5c040275c131cc4e34eda95825d4d917 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/143226 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Robust smoothed canonical correlation analysis for functional dataBoente Boente, Graciela LinaKudraszow, Nadia LauraCANONICAL CORRELATION ANALYSISFUNCTIONAL DATAROBUST ESTIMATIONSMOOTHING TECHNIQUEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This paper provides robust estimators for the first canonical correlation anddirections of random elements on Hilbert separable spaces by using robust association and scale measures combined with basis expansion and/or penalizations as a regularization tool. Under regularity conditions, the resulting estimators are consistent. The finitesample performance of our proposal is illustrated through a simulation study that showsthat, as expected, the robust method outperforms the existing classical procedure whenthe data are contaminated. A real data example is also presented.Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Universidad de Buenos Aires; ArgentinaFil: Kudraszow, Nadia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; ArgentinaStatistica Sinica2021-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143226Boente Boente, Graciela Lina; Kudraszow, Nadia Laura; Robust smoothed canonical correlation analysis for functional data; Statistica Sinica; Statistica Sinica; 32; 9-2021; 1-251017-0405CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www3.stat.sinica.edu.tw/statistica/J32N3/J32N305/J32N305.htmlinfo:eu-repo/semantics/altIdentifier/doi/10.5705/ss.202020.0084info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2011.10576info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2011.10576info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:42:48Zoai:ri.conicet.gov.ar:11336/143226instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:42:48.917CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Robust smoothed canonical correlation analysis for functional data |
| title |
Robust smoothed canonical correlation analysis for functional data |
| spellingShingle |
Robust smoothed canonical correlation analysis for functional data Boente Boente, Graciela Lina CANONICAL CORRELATION ANALYSIS FUNCTIONAL DATA ROBUST ESTIMATION SMOOTHING TECHNIQUES |
| title_short |
Robust smoothed canonical correlation analysis for functional data |
| title_full |
Robust smoothed canonical correlation analysis for functional data |
| title_fullStr |
Robust smoothed canonical correlation analysis for functional data |
| title_full_unstemmed |
Robust smoothed canonical correlation analysis for functional data |
| title_sort |
Robust smoothed canonical correlation analysis for functional data |
| dc.creator.none.fl_str_mv |
Boente Boente, Graciela Lina Kudraszow, Nadia Laura |
| author |
Boente Boente, Graciela Lina |
| author_facet |
Boente Boente, Graciela Lina Kudraszow, Nadia Laura |
| author_role |
author |
| author2 |
Kudraszow, Nadia Laura |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
CANONICAL CORRELATION ANALYSIS FUNCTIONAL DATA ROBUST ESTIMATION SMOOTHING TECHNIQUES |
| topic |
CANONICAL CORRELATION ANALYSIS FUNCTIONAL DATA ROBUST ESTIMATION SMOOTHING TECHNIQUES |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
This paper provides robust estimators for the first canonical correlation anddirections of random elements on Hilbert separable spaces by using robust association and scale measures combined with basis expansion and/or penalizations as a regularization tool. Under regularity conditions, the resulting estimators are consistent. The finitesample performance of our proposal is illustrated through a simulation study that showsthat, as expected, the robust method outperforms the existing classical procedure whenthe data are contaminated. A real data example is also presented. Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Universidad de Buenos Aires; Argentina Fil: Kudraszow, Nadia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; Argentina |
| description |
This paper provides robust estimators for the first canonical correlation anddirections of random elements on Hilbert separable spaces by using robust association and scale measures combined with basis expansion and/or penalizations as a regularization tool. Under regularity conditions, the resulting estimators are consistent. The finitesample performance of our proposal is illustrated through a simulation study that showsthat, as expected, the robust method outperforms the existing classical procedure whenthe data are contaminated. A real data example is also presented. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/143226 Boente Boente, Graciela Lina; Kudraszow, Nadia Laura; Robust smoothed canonical correlation analysis for functional data; Statistica Sinica; Statistica Sinica; 32; 9-2021; 1-25 1017-0405 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/143226 |
| identifier_str_mv |
Boente Boente, Graciela Lina; Kudraszow, Nadia Laura; Robust smoothed canonical correlation analysis for functional data; Statistica Sinica; Statistica Sinica; 32; 9-2021; 1-25 1017-0405 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www3.stat.sinica.edu.tw/statistica/J32N3/J32N305/J32N305.html info:eu-repo/semantics/altIdentifier/doi/10.5705/ss.202020.0084 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2011.10576 info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2011.10576 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Statistica Sinica |
| publisher.none.fl_str_mv |
Statistica Sinica |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847978127964241920 |
| score |
13.087074 |