Fisher Vectors for PolSAR Image Classification
- Autores
- Redolfi, Javier Andrés; Sanchez, Jorge Adrian; Flesia, Ana Georgina
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this letter, we study the application of the Fisher vector (FV) to the problem of pixelwise supervised classification of polarimetric synthetic aperture radar images. This is a challenging problem since information in those images is encoded as complex-valued covariance matrices. We observe that the real parts of these matrices preserve the positive semidefiniteness property of their complex counterpart. Based on this observation, we derive an FV from a mixture of real Wishart densities and integrate it with a Potts-like energy model in order to capture spatial dependencies between neighboring regions. Experimental results on two challenging data sets show the effectiveness of the approach.
Fil: Redolfi, Javier Andrés. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Sanchez, Jorge Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Flesia, Ana Georgina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
FISHER VECTORS (FVS)
IMAGE CLASSIFICATION
POLARIMETRIC SYNTHETIC APERTURE RADAR (POLSAR) - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/59999
Ver los metadatos del registro completo
id |
CONICETDig_ed46d2d93c8c2c7b2eb599d1d2f901c9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/59999 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Fisher Vectors for PolSAR Image ClassificationRedolfi, Javier AndrésSanchez, Jorge AdrianFlesia, Ana GeorginaFISHER VECTORS (FVS)IMAGE CLASSIFICATIONPOLARIMETRIC SYNTHETIC APERTURE RADAR (POLSAR)https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this letter, we study the application of the Fisher vector (FV) to the problem of pixelwise supervised classification of polarimetric synthetic aperture radar images. This is a challenging problem since information in those images is encoded as complex-valued covariance matrices. We observe that the real parts of these matrices preserve the positive semidefiniteness property of their complex counterpart. Based on this observation, we derive an FV from a mixture of real Wishart densities and integrate it with a Potts-like energy model in order to capture spatial dependencies between neighboring regions. Experimental results on two challenging data sets show the effectiveness of the approach.Fil: Redolfi, Javier Andrés. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sanchez, Jorge Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Flesia, Ana Georgina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaInstitute of Electrical and Electronics Engineers2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59999Redolfi, Javier Andrés; Sanchez, Jorge Adrian; Flesia, Ana Georgina; Fisher Vectors for PolSAR Image Classification; Institute of Electrical and Electronics Engineers; Ieee Geoscience and Remote Sensing Letters; 14; 11; 11-2017; 2057-20611545-598XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/8052593/info:eu-repo/semantics/altIdentifier/doi/10.1109/LGRS.2017.2750800info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:11Zoai:ri.conicet.gov.ar:11336/59999instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:11.923CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Fisher Vectors for PolSAR Image Classification |
title |
Fisher Vectors for PolSAR Image Classification |
spellingShingle |
Fisher Vectors for PolSAR Image Classification Redolfi, Javier Andrés FISHER VECTORS (FVS) IMAGE CLASSIFICATION POLARIMETRIC SYNTHETIC APERTURE RADAR (POLSAR) |
title_short |
Fisher Vectors for PolSAR Image Classification |
title_full |
Fisher Vectors for PolSAR Image Classification |
title_fullStr |
Fisher Vectors for PolSAR Image Classification |
title_full_unstemmed |
Fisher Vectors for PolSAR Image Classification |
title_sort |
Fisher Vectors for PolSAR Image Classification |
dc.creator.none.fl_str_mv |
Redolfi, Javier Andrés Sanchez, Jorge Adrian Flesia, Ana Georgina |
author |
Redolfi, Javier Andrés |
author_facet |
Redolfi, Javier Andrés Sanchez, Jorge Adrian Flesia, Ana Georgina |
author_role |
author |
author2 |
Sanchez, Jorge Adrian Flesia, Ana Georgina |
author2_role |
author author |
dc.subject.none.fl_str_mv |
FISHER VECTORS (FVS) IMAGE CLASSIFICATION POLARIMETRIC SYNTHETIC APERTURE RADAR (POLSAR) |
topic |
FISHER VECTORS (FVS) IMAGE CLASSIFICATION POLARIMETRIC SYNTHETIC APERTURE RADAR (POLSAR) |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this letter, we study the application of the Fisher vector (FV) to the problem of pixelwise supervised classification of polarimetric synthetic aperture radar images. This is a challenging problem since information in those images is encoded as complex-valued covariance matrices. We observe that the real parts of these matrices preserve the positive semidefiniteness property of their complex counterpart. Based on this observation, we derive an FV from a mixture of real Wishart densities and integrate it with a Potts-like energy model in order to capture spatial dependencies between neighboring regions. Experimental results on two challenging data sets show the effectiveness of the approach. Fil: Redolfi, Javier Andrés. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Sanchez, Jorge Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Flesia, Ana Georgina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
In this letter, we study the application of the Fisher vector (FV) to the problem of pixelwise supervised classification of polarimetric synthetic aperture radar images. This is a challenging problem since information in those images is encoded as complex-valued covariance matrices. We observe that the real parts of these matrices preserve the positive semidefiniteness property of their complex counterpart. Based on this observation, we derive an FV from a mixture of real Wishart densities and integrate it with a Potts-like energy model in order to capture spatial dependencies between neighboring regions. Experimental results on two challenging data sets show the effectiveness of the approach. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/59999 Redolfi, Javier Andrés; Sanchez, Jorge Adrian; Flesia, Ana Georgina; Fisher Vectors for PolSAR Image Classification; Institute of Electrical and Electronics Engineers; Ieee Geoscience and Remote Sensing Letters; 14; 11; 11-2017; 2057-2061 1545-598X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/59999 |
identifier_str_mv |
Redolfi, Javier Andrés; Sanchez, Jorge Adrian; Flesia, Ana Georgina; Fisher Vectors for PolSAR Image Classification; Institute of Electrical and Electronics Engineers; Ieee Geoscience and Remote Sensing Letters; 14; 11; 11-2017; 2057-2061 1545-598X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/8052593/ info:eu-repo/semantics/altIdentifier/doi/10.1109/LGRS.2017.2750800 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268909459210240 |
score |
13.13397 |