Exploring the effect of partial B-site Al3+-Mg2+ dual substitution on optoelectronic, surface, and photocatalytic properties of BaTaO2N
- Autores
- Hojamberdiev, Mirabbos; Vargas Balda, Ronald Eduardo; Kadirova, Zukhra C.; Teshima, Katsuya; Lerch, Martin
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- BaTaO2N is appraised to be one of the few promising 600 nm-class photocatalysts for solar water splitting. However, the presence of structural defects and low charge separation limits its photocatalytic activity. Compared with mono substitution, dual substitution can be more effective in engineering the structural defects and improving the photocatalytic activity if foreign ions are suitably selected. In this work, we involve a dual-substitution approach to partially substitute Al3+ and/or Mg2+ for Ta5+ in BaTaO2N. By maintaining the maximum concentration of Al3+-Mg2+ dual substitution at 5%, the effect of the Al3+-Mg2+ cosubstituent ratio on the optoelectronic, surface, and photocatalytic properties of BaTaO2N is investigated. The Al3+-Mg2+ dual substitution leads to the shift of optical absorption edge toward shorter wavelengths, increasing the optical bandgap energy of BaTaO2N. This effect is more pronounced in the samples with a higher concentration of Mg2+ due to the replacement of N3− by a large number of O2− to compensate charge balance. The initial reaction rates for the evolution of O2 and H2 reveal the improvement in the photocatalytic activity of BaTaO2N due to the partial Al3+-Mg2+ dual substitution. Higher O2 evolution is observed in the samples with a higher concentration of Mg2+, while the H2 evolution rate significantly relies on the increased concentration of Al3+. According to the density functional theory (DFT) calculations, the effective masses of electrons become slightly lower than that of pristine BaTaO2N after partial Al3+-Mg2+ (co)substitution, while a contrary tendency is observed for the effective masses of holes. The calculated positions of the valence band maximum and conduction band minimum are aligned with respect to the normal hydrogen electrode (NHE), and partial Al3+-Mg2+ (co)substituted BaTaO2N photocatalysts can be promising candidates for visible-light-induced water splitting.
Fil: Hojamberdiev, Mirabbos. Technishe Universitat Berlin; Alemania
Fil: Vargas Balda, Ronald Eduardo. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; Argentina
Fil: Kadirova, Zukhra C.. National University of Uzbekistan; Uzbekistán
Fil: Teshima, Katsuya. Shinshu University; Japón
Fil: Lerch, Martin. Technishe Universitat Berlin; Alemania - Materia
-
BaTaO2N
PHOTOCATALYTIC PROPERTIES
WATER SPLITTING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/217443
Ver los metadatos del registro completo
id |
CONICETDig_ecb9809e6c0aa26941d85e0ddf4e13f2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/217443 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Exploring the effect of partial B-site Al3+-Mg2+ dual substitution on optoelectronic, surface, and photocatalytic properties of BaTaO2NHojamberdiev, MirabbosVargas Balda, Ronald EduardoKadirova, Zukhra C.Teshima, KatsuyaLerch, MartinBaTaO2NPHOTOCATALYTIC PROPERTIESWATER SPLITTINGhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2BaTaO2N is appraised to be one of the few promising 600 nm-class photocatalysts for solar water splitting. However, the presence of structural defects and low charge separation limits its photocatalytic activity. Compared with mono substitution, dual substitution can be more effective in engineering the structural defects and improving the photocatalytic activity if foreign ions are suitably selected. In this work, we involve a dual-substitution approach to partially substitute Al3+ and/or Mg2+ for Ta5+ in BaTaO2N. By maintaining the maximum concentration of Al3+-Mg2+ dual substitution at 5%, the effect of the Al3+-Mg2+ cosubstituent ratio on the optoelectronic, surface, and photocatalytic properties of BaTaO2N is investigated. The Al3+-Mg2+ dual substitution leads to the shift of optical absorption edge toward shorter wavelengths, increasing the optical bandgap energy of BaTaO2N. This effect is more pronounced in the samples with a higher concentration of Mg2+ due to the replacement of N3− by a large number of O2− to compensate charge balance. The initial reaction rates for the evolution of O2 and H2 reveal the improvement in the photocatalytic activity of BaTaO2N due to the partial Al3+-Mg2+ dual substitution. Higher O2 evolution is observed in the samples with a higher concentration of Mg2+, while the H2 evolution rate significantly relies on the increased concentration of Al3+. According to the density functional theory (DFT) calculations, the effective masses of electrons become slightly lower than that of pristine BaTaO2N after partial Al3+-Mg2+ (co)substitution, while a contrary tendency is observed for the effective masses of holes. The calculated positions of the valence band maximum and conduction band minimum are aligned with respect to the normal hydrogen electrode (NHE), and partial Al3+-Mg2+ (co)substituted BaTaO2N photocatalysts can be promising candidates for visible-light-induced water splitting.Fil: Hojamberdiev, Mirabbos. Technishe Universitat Berlin; AlemaniaFil: Vargas Balda, Ronald Eduardo. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; ArgentinaFil: Kadirova, Zukhra C.. National University of Uzbekistan; UzbekistánFil: Teshima, Katsuya. Shinshu University; JapónFil: Lerch, Martin. Technishe Universitat Berlin; AlemaniaRoyal Society of Chemistry2022-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/217443Hojamberdiev, Mirabbos; Vargas Balda, Ronald Eduardo; Kadirova, Zukhra C.; Teshima, Katsuya; Lerch, Martin; Exploring the effect of partial B-site Al3+-Mg2+ dual substitution on optoelectronic, surface, and photocatalytic properties of BaTaO2N; Royal Society of Chemistry; Materials Advances; 3; 19; 8-2022; 7348-73592633-5409CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://xlink.rsc.org/?DOI=D2MA00611Ainfo:eu-repo/semantics/altIdentifier/doi/10.1039/D2MA00611Ainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:30:45Zoai:ri.conicet.gov.ar:11336/217443instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:30:45.745CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Exploring the effect of partial B-site Al3+-Mg2+ dual substitution on optoelectronic, surface, and photocatalytic properties of BaTaO2N |
title |
Exploring the effect of partial B-site Al3+-Mg2+ dual substitution on optoelectronic, surface, and photocatalytic properties of BaTaO2N |
spellingShingle |
Exploring the effect of partial B-site Al3+-Mg2+ dual substitution on optoelectronic, surface, and photocatalytic properties of BaTaO2N Hojamberdiev, Mirabbos BaTaO2N PHOTOCATALYTIC PROPERTIES WATER SPLITTING |
title_short |
Exploring the effect of partial B-site Al3+-Mg2+ dual substitution on optoelectronic, surface, and photocatalytic properties of BaTaO2N |
title_full |
Exploring the effect of partial B-site Al3+-Mg2+ dual substitution on optoelectronic, surface, and photocatalytic properties of BaTaO2N |
title_fullStr |
Exploring the effect of partial B-site Al3+-Mg2+ dual substitution on optoelectronic, surface, and photocatalytic properties of BaTaO2N |
title_full_unstemmed |
Exploring the effect of partial B-site Al3+-Mg2+ dual substitution on optoelectronic, surface, and photocatalytic properties of BaTaO2N |
title_sort |
Exploring the effect of partial B-site Al3+-Mg2+ dual substitution on optoelectronic, surface, and photocatalytic properties of BaTaO2N |
dc.creator.none.fl_str_mv |
Hojamberdiev, Mirabbos Vargas Balda, Ronald Eduardo Kadirova, Zukhra C. Teshima, Katsuya Lerch, Martin |
author |
Hojamberdiev, Mirabbos |
author_facet |
Hojamberdiev, Mirabbos Vargas Balda, Ronald Eduardo Kadirova, Zukhra C. Teshima, Katsuya Lerch, Martin |
author_role |
author |
author2 |
Vargas Balda, Ronald Eduardo Kadirova, Zukhra C. Teshima, Katsuya Lerch, Martin |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
BaTaO2N PHOTOCATALYTIC PROPERTIES WATER SPLITTING |
topic |
BaTaO2N PHOTOCATALYTIC PROPERTIES WATER SPLITTING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
BaTaO2N is appraised to be one of the few promising 600 nm-class photocatalysts for solar water splitting. However, the presence of structural defects and low charge separation limits its photocatalytic activity. Compared with mono substitution, dual substitution can be more effective in engineering the structural defects and improving the photocatalytic activity if foreign ions are suitably selected. In this work, we involve a dual-substitution approach to partially substitute Al3+ and/or Mg2+ for Ta5+ in BaTaO2N. By maintaining the maximum concentration of Al3+-Mg2+ dual substitution at 5%, the effect of the Al3+-Mg2+ cosubstituent ratio on the optoelectronic, surface, and photocatalytic properties of BaTaO2N is investigated. The Al3+-Mg2+ dual substitution leads to the shift of optical absorption edge toward shorter wavelengths, increasing the optical bandgap energy of BaTaO2N. This effect is more pronounced in the samples with a higher concentration of Mg2+ due to the replacement of N3− by a large number of O2− to compensate charge balance. The initial reaction rates for the evolution of O2 and H2 reveal the improvement in the photocatalytic activity of BaTaO2N due to the partial Al3+-Mg2+ dual substitution. Higher O2 evolution is observed in the samples with a higher concentration of Mg2+, while the H2 evolution rate significantly relies on the increased concentration of Al3+. According to the density functional theory (DFT) calculations, the effective masses of electrons become slightly lower than that of pristine BaTaO2N after partial Al3+-Mg2+ (co)substitution, while a contrary tendency is observed for the effective masses of holes. The calculated positions of the valence band maximum and conduction band minimum are aligned with respect to the normal hydrogen electrode (NHE), and partial Al3+-Mg2+ (co)substituted BaTaO2N photocatalysts can be promising candidates for visible-light-induced water splitting. Fil: Hojamberdiev, Mirabbos. Technishe Universitat Berlin; Alemania Fil: Vargas Balda, Ronald Eduardo. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; Argentina Fil: Kadirova, Zukhra C.. National University of Uzbekistan; Uzbekistán Fil: Teshima, Katsuya. Shinshu University; Japón Fil: Lerch, Martin. Technishe Universitat Berlin; Alemania |
description |
BaTaO2N is appraised to be one of the few promising 600 nm-class photocatalysts for solar water splitting. However, the presence of structural defects and low charge separation limits its photocatalytic activity. Compared with mono substitution, dual substitution can be more effective in engineering the structural defects and improving the photocatalytic activity if foreign ions are suitably selected. In this work, we involve a dual-substitution approach to partially substitute Al3+ and/or Mg2+ for Ta5+ in BaTaO2N. By maintaining the maximum concentration of Al3+-Mg2+ dual substitution at 5%, the effect of the Al3+-Mg2+ cosubstituent ratio on the optoelectronic, surface, and photocatalytic properties of BaTaO2N is investigated. The Al3+-Mg2+ dual substitution leads to the shift of optical absorption edge toward shorter wavelengths, increasing the optical bandgap energy of BaTaO2N. This effect is more pronounced in the samples with a higher concentration of Mg2+ due to the replacement of N3− by a large number of O2− to compensate charge balance. The initial reaction rates for the evolution of O2 and H2 reveal the improvement in the photocatalytic activity of BaTaO2N due to the partial Al3+-Mg2+ dual substitution. Higher O2 evolution is observed in the samples with a higher concentration of Mg2+, while the H2 evolution rate significantly relies on the increased concentration of Al3+. According to the density functional theory (DFT) calculations, the effective masses of electrons become slightly lower than that of pristine BaTaO2N after partial Al3+-Mg2+ (co)substitution, while a contrary tendency is observed for the effective masses of holes. The calculated positions of the valence band maximum and conduction band minimum are aligned with respect to the normal hydrogen electrode (NHE), and partial Al3+-Mg2+ (co)substituted BaTaO2N photocatalysts can be promising candidates for visible-light-induced water splitting. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/217443 Hojamberdiev, Mirabbos; Vargas Balda, Ronald Eduardo; Kadirova, Zukhra C.; Teshima, Katsuya; Lerch, Martin; Exploring the effect of partial B-site Al3+-Mg2+ dual substitution on optoelectronic, surface, and photocatalytic properties of BaTaO2N; Royal Society of Chemistry; Materials Advances; 3; 19; 8-2022; 7348-7359 2633-5409 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/217443 |
identifier_str_mv |
Hojamberdiev, Mirabbos; Vargas Balda, Ronald Eduardo; Kadirova, Zukhra C.; Teshima, Katsuya; Lerch, Martin; Exploring the effect of partial B-site Al3+-Mg2+ dual substitution on optoelectronic, surface, and photocatalytic properties of BaTaO2N; Royal Society of Chemistry; Materials Advances; 3; 19; 8-2022; 7348-7359 2633-5409 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://xlink.rsc.org/?DOI=D2MA00611A info:eu-repo/semantics/altIdentifier/doi/10.1039/D2MA00611A |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614316331892736 |
score |
13.070432 |