Untangling the Effect of Carbonaceous Materials on the Photoelectrochemical Performance of BaTaO2N

Autores
Hojamberdiev, Mirabbos; Vargas Balda, Ronald Eduardo; Madriz Ruiz, Lorean Mercedes; Kadirova, Zukhra C.; Yubuta, Kunio; Zhang, Fuxiang; Teshima, Katsuya; Lerch, Martin
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The water oxidation reaction is a rate-determining step in solar water splitting. The number of surviving photoexcited holes is one of the most influencing factors affecting the photoelectrochemical water oxidation efficiency of photocatalysts. The solar-to-hydrogen energy conversion efficiency of BaTaO2N is still far below the benchmark efficiency set for practical applications, notwithstanding its potential as a 600 nm-class photocatalyst in solar water splitting. To improve its efficiency in photoelectrochemical water splitting, this study offers a straightforward route to develop photocatalytic materials based on the combination of BaTaO2N and carbonaceous materials with different dimensions. The impact of diverse carbonaceous materials, such as fullerene, g-C3N4, graphene, carbon nanohorns, and carbon nanotubes, on the photoelectrochemical behavior of BaTaO2N has been examined. Notably, the use of graphene and g-C3N4 remarkably improves the photoelectrochemical performance of the composite photocatalysts through a higher photocurrent and acting as electron reservoirs. Consequently, a marked reduction in recombination rates, even at low overpotentials, leads to a higher accumulation of photoexcited holes, resulting in 2.6- and 1.7-fold increased BaTaO2N photocurrent densities using graphene and g-C3N4, respectively. The observed trends in the dark for the oxygen reduction reaction (ORR) potential align with the increase in the photocurrent density, revealing a good correlation between opposite phenomena. Importantly, the enhancement observed implies an underlying accumulation phenomenon. The verification of this concept lies in the evidence provided by oxygen reduction and is in line with photoredox flux matching during photocatalysis. This research underscores the intricate interplay between carbonaceous materials and oxynitride photocatalysts, offering a strategic approach to enhancing various photocatalytic capabilities.
Fil: Hojamberdiev, Mirabbos. Technishe Universitat Berlin; Alemania
Fil: Vargas Balda, Ronald Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Madriz Ruiz, Lorean Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Kadirova, Zukhra C.. No especifíca;
Fil: Yubuta, Kunio. Kyushu University; Japón
Fil: Zhang, Fuxiang. Chinese Academy of Sciences; República de China
Fil: Teshima, Katsuya. Shinshu University; Japón
Fil: Lerch, Martin. Chinese Academy of Sciences; República de China
Materia
BaTaO2ON
Carbonaceous Materials
Photoelectrochemistry
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/236188

id CONICETDig_65b0119d47786bdd90b3d0866f9561e0
oai_identifier_str oai:ri.conicet.gov.ar:11336/236188
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Untangling the Effect of Carbonaceous Materials on the Photoelectrochemical Performance of BaTaO2NHojamberdiev, MirabbosVargas Balda, Ronald EduardoMadriz Ruiz, Lorean MercedesKadirova, Zukhra C.Yubuta, KunioZhang, FuxiangTeshima, KatsuyaLerch, MartinBaTaO2ONCarbonaceous MaterialsPhotoelectrochemistryhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The water oxidation reaction is a rate-determining step in solar water splitting. The number of surviving photoexcited holes is one of the most influencing factors affecting the photoelectrochemical water oxidation efficiency of photocatalysts. The solar-to-hydrogen energy conversion efficiency of BaTaO2N is still far below the benchmark efficiency set for practical applications, notwithstanding its potential as a 600 nm-class photocatalyst in solar water splitting. To improve its efficiency in photoelectrochemical water splitting, this study offers a straightforward route to develop photocatalytic materials based on the combination of BaTaO2N and carbonaceous materials with different dimensions. The impact of diverse carbonaceous materials, such as fullerene, g-C3N4, graphene, carbon nanohorns, and carbon nanotubes, on the photoelectrochemical behavior of BaTaO2N has been examined. Notably, the use of graphene and g-C3N4 remarkably improves the photoelectrochemical performance of the composite photocatalysts through a higher photocurrent and acting as electron reservoirs. Consequently, a marked reduction in recombination rates, even at low overpotentials, leads to a higher accumulation of photoexcited holes, resulting in 2.6- and 1.7-fold increased BaTaO2N photocurrent densities using graphene and g-C3N4, respectively. The observed trends in the dark for the oxygen reduction reaction (ORR) potential align with the increase in the photocurrent density, revealing a good correlation between opposite phenomena. Importantly, the enhancement observed implies an underlying accumulation phenomenon. The verification of this concept lies in the evidence provided by oxygen reduction and is in line with photoredox flux matching during photocatalysis. This research underscores the intricate interplay between carbonaceous materials and oxynitride photocatalysts, offering a strategic approach to enhancing various photocatalytic capabilities.Fil: Hojamberdiev, Mirabbos. Technishe Universitat Berlin; AlemaniaFil: Vargas Balda, Ronald Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Madriz Ruiz, Lorean Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Kadirova, Zukhra C.. No especifíca;Fil: Yubuta, Kunio. Kyushu University; JapónFil: Zhang, Fuxiang. Chinese Academy of Sciences; República de ChinaFil: Teshima, Katsuya. Shinshu University; JapónFil: Lerch, Martin. Chinese Academy of Sciences; República de ChinaAmerican Chemical Society2024-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/236188Hojamberdiev, Mirabbos; Vargas Balda, Ronald Eduardo; Madriz Ruiz, Lorean Mercedes; Kadirova, Zukhra C.; Yubuta, Kunio; et al.; Untangling the Effect of Carbonaceous Materials on the Photoelectrochemical Performance of BaTaO2N; American Chemical Society; ACS Omega; 9; 6; 1-2024; 7022-70332470-1343CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsomega.3c08894info:eu-repo/semantics/altIdentifier/doi/10.1021/acsomega.3c08894info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:27Zoai:ri.conicet.gov.ar:11336/236188instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:27.411CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Untangling the Effect of Carbonaceous Materials on the Photoelectrochemical Performance of BaTaO2N
title Untangling the Effect of Carbonaceous Materials on the Photoelectrochemical Performance of BaTaO2N
spellingShingle Untangling the Effect of Carbonaceous Materials on the Photoelectrochemical Performance of BaTaO2N
Hojamberdiev, Mirabbos
BaTaO2ON
Carbonaceous Materials
Photoelectrochemistry
title_short Untangling the Effect of Carbonaceous Materials on the Photoelectrochemical Performance of BaTaO2N
title_full Untangling the Effect of Carbonaceous Materials on the Photoelectrochemical Performance of BaTaO2N
title_fullStr Untangling the Effect of Carbonaceous Materials on the Photoelectrochemical Performance of BaTaO2N
title_full_unstemmed Untangling the Effect of Carbonaceous Materials on the Photoelectrochemical Performance of BaTaO2N
title_sort Untangling the Effect of Carbonaceous Materials on the Photoelectrochemical Performance of BaTaO2N
dc.creator.none.fl_str_mv Hojamberdiev, Mirabbos
Vargas Balda, Ronald Eduardo
Madriz Ruiz, Lorean Mercedes
Kadirova, Zukhra C.
Yubuta, Kunio
Zhang, Fuxiang
Teshima, Katsuya
Lerch, Martin
author Hojamberdiev, Mirabbos
author_facet Hojamberdiev, Mirabbos
Vargas Balda, Ronald Eduardo
Madriz Ruiz, Lorean Mercedes
Kadirova, Zukhra C.
Yubuta, Kunio
Zhang, Fuxiang
Teshima, Katsuya
Lerch, Martin
author_role author
author2 Vargas Balda, Ronald Eduardo
Madriz Ruiz, Lorean Mercedes
Kadirova, Zukhra C.
Yubuta, Kunio
Zhang, Fuxiang
Teshima, Katsuya
Lerch, Martin
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv BaTaO2ON
Carbonaceous Materials
Photoelectrochemistry
topic BaTaO2ON
Carbonaceous Materials
Photoelectrochemistry
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The water oxidation reaction is a rate-determining step in solar water splitting. The number of surviving photoexcited holes is one of the most influencing factors affecting the photoelectrochemical water oxidation efficiency of photocatalysts. The solar-to-hydrogen energy conversion efficiency of BaTaO2N is still far below the benchmark efficiency set for practical applications, notwithstanding its potential as a 600 nm-class photocatalyst in solar water splitting. To improve its efficiency in photoelectrochemical water splitting, this study offers a straightforward route to develop photocatalytic materials based on the combination of BaTaO2N and carbonaceous materials with different dimensions. The impact of diverse carbonaceous materials, such as fullerene, g-C3N4, graphene, carbon nanohorns, and carbon nanotubes, on the photoelectrochemical behavior of BaTaO2N has been examined. Notably, the use of graphene and g-C3N4 remarkably improves the photoelectrochemical performance of the composite photocatalysts through a higher photocurrent and acting as electron reservoirs. Consequently, a marked reduction in recombination rates, even at low overpotentials, leads to a higher accumulation of photoexcited holes, resulting in 2.6- and 1.7-fold increased BaTaO2N photocurrent densities using graphene and g-C3N4, respectively. The observed trends in the dark for the oxygen reduction reaction (ORR) potential align with the increase in the photocurrent density, revealing a good correlation between opposite phenomena. Importantly, the enhancement observed implies an underlying accumulation phenomenon. The verification of this concept lies in the evidence provided by oxygen reduction and is in line with photoredox flux matching during photocatalysis. This research underscores the intricate interplay between carbonaceous materials and oxynitride photocatalysts, offering a strategic approach to enhancing various photocatalytic capabilities.
Fil: Hojamberdiev, Mirabbos. Technishe Universitat Berlin; Alemania
Fil: Vargas Balda, Ronald Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Madriz Ruiz, Lorean Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Kadirova, Zukhra C.. No especifíca;
Fil: Yubuta, Kunio. Kyushu University; Japón
Fil: Zhang, Fuxiang. Chinese Academy of Sciences; República de China
Fil: Teshima, Katsuya. Shinshu University; Japón
Fil: Lerch, Martin. Chinese Academy of Sciences; República de China
description The water oxidation reaction is a rate-determining step in solar water splitting. The number of surviving photoexcited holes is one of the most influencing factors affecting the photoelectrochemical water oxidation efficiency of photocatalysts. The solar-to-hydrogen energy conversion efficiency of BaTaO2N is still far below the benchmark efficiency set for practical applications, notwithstanding its potential as a 600 nm-class photocatalyst in solar water splitting. To improve its efficiency in photoelectrochemical water splitting, this study offers a straightforward route to develop photocatalytic materials based on the combination of BaTaO2N and carbonaceous materials with different dimensions. The impact of diverse carbonaceous materials, such as fullerene, g-C3N4, graphene, carbon nanohorns, and carbon nanotubes, on the photoelectrochemical behavior of BaTaO2N has been examined. Notably, the use of graphene and g-C3N4 remarkably improves the photoelectrochemical performance of the composite photocatalysts through a higher photocurrent and acting as electron reservoirs. Consequently, a marked reduction in recombination rates, even at low overpotentials, leads to a higher accumulation of photoexcited holes, resulting in 2.6- and 1.7-fold increased BaTaO2N photocurrent densities using graphene and g-C3N4, respectively. The observed trends in the dark for the oxygen reduction reaction (ORR) potential align with the increase in the photocurrent density, revealing a good correlation between opposite phenomena. Importantly, the enhancement observed implies an underlying accumulation phenomenon. The verification of this concept lies in the evidence provided by oxygen reduction and is in line with photoredox flux matching during photocatalysis. This research underscores the intricate interplay between carbonaceous materials and oxynitride photocatalysts, offering a strategic approach to enhancing various photocatalytic capabilities.
publishDate 2024
dc.date.none.fl_str_mv 2024-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/236188
Hojamberdiev, Mirabbos; Vargas Balda, Ronald Eduardo; Madriz Ruiz, Lorean Mercedes; Kadirova, Zukhra C.; Yubuta, Kunio; et al.; Untangling the Effect of Carbonaceous Materials on the Photoelectrochemical Performance of BaTaO2N; American Chemical Society; ACS Omega; 9; 6; 1-2024; 7022-7033
2470-1343
CONICET Digital
CONICET
url http://hdl.handle.net/11336/236188
identifier_str_mv Hojamberdiev, Mirabbos; Vargas Balda, Ronald Eduardo; Madriz Ruiz, Lorean Mercedes; Kadirova, Zukhra C.; Yubuta, Kunio; et al.; Untangling the Effect of Carbonaceous Materials on the Photoelectrochemical Performance of BaTaO2N; American Chemical Society; ACS Omega; 9; 6; 1-2024; 7022-7033
2470-1343
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsomega.3c08894
info:eu-repo/semantics/altIdentifier/doi/10.1021/acsomega.3c08894
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844612989347430400
score 13.070432