Untangling the Effect of Carbonaceous Materials on the Photoelectrochemical Performance of BaTaO2N
- Autores
- Hojamberdiev, Mirabbos; Vargas Balda, Ronald Eduardo; Madriz Ruiz, Lorean Mercedes; Kadirova, Zukhra C.; Yubuta, Kunio; Zhang, Fuxiang; Teshima, Katsuya; Lerch, Martin
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The water oxidation reaction is a rate-determining step in solar water splitting. The number of surviving photoexcited holes is one of the most influencing factors affecting the photoelectrochemical water oxidation efficiency of photocatalysts. The solar-to-hydrogen energy conversion efficiency of BaTaO2N is still far below the benchmark efficiency set for practical applications, notwithstanding its potential as a 600 nm-class photocatalyst in solar water splitting. To improve its efficiency in photoelectrochemical water splitting, this study offers a straightforward route to develop photocatalytic materials based on the combination of BaTaO2N and carbonaceous materials with different dimensions. The impact of diverse carbonaceous materials, such as fullerene, g-C3N4, graphene, carbon nanohorns, and carbon nanotubes, on the photoelectrochemical behavior of BaTaO2N has been examined. Notably, the use of graphene and g-C3N4 remarkably improves the photoelectrochemical performance of the composite photocatalysts through a higher photocurrent and acting as electron reservoirs. Consequently, a marked reduction in recombination rates, even at low overpotentials, leads to a higher accumulation of photoexcited holes, resulting in 2.6- and 1.7-fold increased BaTaO2N photocurrent densities using graphene and g-C3N4, respectively. The observed trends in the dark for the oxygen reduction reaction (ORR) potential align with the increase in the photocurrent density, revealing a good correlation between opposite phenomena. Importantly, the enhancement observed implies an underlying accumulation phenomenon. The verification of this concept lies in the evidence provided by oxygen reduction and is in line with photoredox flux matching during photocatalysis. This research underscores the intricate interplay between carbonaceous materials and oxynitride photocatalysts, offering a strategic approach to enhancing various photocatalytic capabilities.
Fil: Hojamberdiev, Mirabbos. Technishe Universitat Berlin; Alemania
Fil: Vargas Balda, Ronald Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Madriz Ruiz, Lorean Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Kadirova, Zukhra C.. No especifíca;
Fil: Yubuta, Kunio. Kyushu University; Japón
Fil: Zhang, Fuxiang. Chinese Academy of Sciences; República de China
Fil: Teshima, Katsuya. Shinshu University; Japón
Fil: Lerch, Martin. Chinese Academy of Sciences; República de China - Materia
-
BaTaO2ON
Carbonaceous Materials
Photoelectrochemistry - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/236188
Ver los metadatos del registro completo
id |
CONICETDig_65b0119d47786bdd90b3d0866f9561e0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/236188 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Untangling the Effect of Carbonaceous Materials on the Photoelectrochemical Performance of BaTaO2NHojamberdiev, MirabbosVargas Balda, Ronald EduardoMadriz Ruiz, Lorean MercedesKadirova, Zukhra C.Yubuta, KunioZhang, FuxiangTeshima, KatsuyaLerch, MartinBaTaO2ONCarbonaceous MaterialsPhotoelectrochemistryhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The water oxidation reaction is a rate-determining step in solar water splitting. The number of surviving photoexcited holes is one of the most influencing factors affecting the photoelectrochemical water oxidation efficiency of photocatalysts. The solar-to-hydrogen energy conversion efficiency of BaTaO2N is still far below the benchmark efficiency set for practical applications, notwithstanding its potential as a 600 nm-class photocatalyst in solar water splitting. To improve its efficiency in photoelectrochemical water splitting, this study offers a straightforward route to develop photocatalytic materials based on the combination of BaTaO2N and carbonaceous materials with different dimensions. The impact of diverse carbonaceous materials, such as fullerene, g-C3N4, graphene, carbon nanohorns, and carbon nanotubes, on the photoelectrochemical behavior of BaTaO2N has been examined. Notably, the use of graphene and g-C3N4 remarkably improves the photoelectrochemical performance of the composite photocatalysts through a higher photocurrent and acting as electron reservoirs. Consequently, a marked reduction in recombination rates, even at low overpotentials, leads to a higher accumulation of photoexcited holes, resulting in 2.6- and 1.7-fold increased BaTaO2N photocurrent densities using graphene and g-C3N4, respectively. The observed trends in the dark for the oxygen reduction reaction (ORR) potential align with the increase in the photocurrent density, revealing a good correlation between opposite phenomena. Importantly, the enhancement observed implies an underlying accumulation phenomenon. The verification of this concept lies in the evidence provided by oxygen reduction and is in line with photoredox flux matching during photocatalysis. This research underscores the intricate interplay between carbonaceous materials and oxynitride photocatalysts, offering a strategic approach to enhancing various photocatalytic capabilities.Fil: Hojamberdiev, Mirabbos. Technishe Universitat Berlin; AlemaniaFil: Vargas Balda, Ronald Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Madriz Ruiz, Lorean Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Kadirova, Zukhra C.. No especifíca;Fil: Yubuta, Kunio. Kyushu University; JapónFil: Zhang, Fuxiang. Chinese Academy of Sciences; República de ChinaFil: Teshima, Katsuya. Shinshu University; JapónFil: Lerch, Martin. Chinese Academy of Sciences; República de ChinaAmerican Chemical Society2024-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/236188Hojamberdiev, Mirabbos; Vargas Balda, Ronald Eduardo; Madriz Ruiz, Lorean Mercedes; Kadirova, Zukhra C.; Yubuta, Kunio; et al.; Untangling the Effect of Carbonaceous Materials on the Photoelectrochemical Performance of BaTaO2N; American Chemical Society; ACS Omega; 9; 6; 1-2024; 7022-70332470-1343CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsomega.3c08894info:eu-repo/semantics/altIdentifier/doi/10.1021/acsomega.3c08894info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:27Zoai:ri.conicet.gov.ar:11336/236188instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:27.411CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Untangling the Effect of Carbonaceous Materials on the Photoelectrochemical Performance of BaTaO2N |
title |
Untangling the Effect of Carbonaceous Materials on the Photoelectrochemical Performance of BaTaO2N |
spellingShingle |
Untangling the Effect of Carbonaceous Materials on the Photoelectrochemical Performance of BaTaO2N Hojamberdiev, Mirabbos BaTaO2ON Carbonaceous Materials Photoelectrochemistry |
title_short |
Untangling the Effect of Carbonaceous Materials on the Photoelectrochemical Performance of BaTaO2N |
title_full |
Untangling the Effect of Carbonaceous Materials on the Photoelectrochemical Performance of BaTaO2N |
title_fullStr |
Untangling the Effect of Carbonaceous Materials on the Photoelectrochemical Performance of BaTaO2N |
title_full_unstemmed |
Untangling the Effect of Carbonaceous Materials on the Photoelectrochemical Performance of BaTaO2N |
title_sort |
Untangling the Effect of Carbonaceous Materials on the Photoelectrochemical Performance of BaTaO2N |
dc.creator.none.fl_str_mv |
Hojamberdiev, Mirabbos Vargas Balda, Ronald Eduardo Madriz Ruiz, Lorean Mercedes Kadirova, Zukhra C. Yubuta, Kunio Zhang, Fuxiang Teshima, Katsuya Lerch, Martin |
author |
Hojamberdiev, Mirabbos |
author_facet |
Hojamberdiev, Mirabbos Vargas Balda, Ronald Eduardo Madriz Ruiz, Lorean Mercedes Kadirova, Zukhra C. Yubuta, Kunio Zhang, Fuxiang Teshima, Katsuya Lerch, Martin |
author_role |
author |
author2 |
Vargas Balda, Ronald Eduardo Madriz Ruiz, Lorean Mercedes Kadirova, Zukhra C. Yubuta, Kunio Zhang, Fuxiang Teshima, Katsuya Lerch, Martin |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
BaTaO2ON Carbonaceous Materials Photoelectrochemistry |
topic |
BaTaO2ON Carbonaceous Materials Photoelectrochemistry |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The water oxidation reaction is a rate-determining step in solar water splitting. The number of surviving photoexcited holes is one of the most influencing factors affecting the photoelectrochemical water oxidation efficiency of photocatalysts. The solar-to-hydrogen energy conversion efficiency of BaTaO2N is still far below the benchmark efficiency set for practical applications, notwithstanding its potential as a 600 nm-class photocatalyst in solar water splitting. To improve its efficiency in photoelectrochemical water splitting, this study offers a straightforward route to develop photocatalytic materials based on the combination of BaTaO2N and carbonaceous materials with different dimensions. The impact of diverse carbonaceous materials, such as fullerene, g-C3N4, graphene, carbon nanohorns, and carbon nanotubes, on the photoelectrochemical behavior of BaTaO2N has been examined. Notably, the use of graphene and g-C3N4 remarkably improves the photoelectrochemical performance of the composite photocatalysts through a higher photocurrent and acting as electron reservoirs. Consequently, a marked reduction in recombination rates, even at low overpotentials, leads to a higher accumulation of photoexcited holes, resulting in 2.6- and 1.7-fold increased BaTaO2N photocurrent densities using graphene and g-C3N4, respectively. The observed trends in the dark for the oxygen reduction reaction (ORR) potential align with the increase in the photocurrent density, revealing a good correlation between opposite phenomena. Importantly, the enhancement observed implies an underlying accumulation phenomenon. The verification of this concept lies in the evidence provided by oxygen reduction and is in line with photoredox flux matching during photocatalysis. This research underscores the intricate interplay between carbonaceous materials and oxynitride photocatalysts, offering a strategic approach to enhancing various photocatalytic capabilities. Fil: Hojamberdiev, Mirabbos. Technishe Universitat Berlin; Alemania Fil: Vargas Balda, Ronald Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina Fil: Madriz Ruiz, Lorean Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina Fil: Kadirova, Zukhra C.. No especifíca; Fil: Yubuta, Kunio. Kyushu University; Japón Fil: Zhang, Fuxiang. Chinese Academy of Sciences; República de China Fil: Teshima, Katsuya. Shinshu University; Japón Fil: Lerch, Martin. Chinese Academy of Sciences; República de China |
description |
The water oxidation reaction is a rate-determining step in solar water splitting. The number of surviving photoexcited holes is one of the most influencing factors affecting the photoelectrochemical water oxidation efficiency of photocatalysts. The solar-to-hydrogen energy conversion efficiency of BaTaO2N is still far below the benchmark efficiency set for practical applications, notwithstanding its potential as a 600 nm-class photocatalyst in solar water splitting. To improve its efficiency in photoelectrochemical water splitting, this study offers a straightforward route to develop photocatalytic materials based on the combination of BaTaO2N and carbonaceous materials with different dimensions. The impact of diverse carbonaceous materials, such as fullerene, g-C3N4, graphene, carbon nanohorns, and carbon nanotubes, on the photoelectrochemical behavior of BaTaO2N has been examined. Notably, the use of graphene and g-C3N4 remarkably improves the photoelectrochemical performance of the composite photocatalysts through a higher photocurrent and acting as electron reservoirs. Consequently, a marked reduction in recombination rates, even at low overpotentials, leads to a higher accumulation of photoexcited holes, resulting in 2.6- and 1.7-fold increased BaTaO2N photocurrent densities using graphene and g-C3N4, respectively. The observed trends in the dark for the oxygen reduction reaction (ORR) potential align with the increase in the photocurrent density, revealing a good correlation between opposite phenomena. Importantly, the enhancement observed implies an underlying accumulation phenomenon. The verification of this concept lies in the evidence provided by oxygen reduction and is in line with photoredox flux matching during photocatalysis. This research underscores the intricate interplay between carbonaceous materials and oxynitride photocatalysts, offering a strategic approach to enhancing various photocatalytic capabilities. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/236188 Hojamberdiev, Mirabbos; Vargas Balda, Ronald Eduardo; Madriz Ruiz, Lorean Mercedes; Kadirova, Zukhra C.; Yubuta, Kunio; et al.; Untangling the Effect of Carbonaceous Materials on the Photoelectrochemical Performance of BaTaO2N; American Chemical Society; ACS Omega; 9; 6; 1-2024; 7022-7033 2470-1343 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/236188 |
identifier_str_mv |
Hojamberdiev, Mirabbos; Vargas Balda, Ronald Eduardo; Madriz Ruiz, Lorean Mercedes; Kadirova, Zukhra C.; Yubuta, Kunio; et al.; Untangling the Effect of Carbonaceous Materials on the Photoelectrochemical Performance of BaTaO2N; American Chemical Society; ACS Omega; 9; 6; 1-2024; 7022-7033 2470-1343 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsomega.3c08894 info:eu-repo/semantics/altIdentifier/doi/10.1021/acsomega.3c08894 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844612989347430400 |
score |
13.070432 |