Algebraic functions in quasiprimal algebras
- Autores
- Campercholi, Miguel Alejandro Carlos; Vaggione, Diego Jose
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A function is algebraic on an algebra math formula if it can be implicitly defined by a system of equations on math formula. In this note we give a semantic characterization for algebraic functions on quasiprimal algebras. This characterization is applied to obtain necessary and sufficient conditions for a quasiprimal algebra math formula to have every one of its algebraic functions be a term function. We also apply our results to particular algebras such as finite fields and monadic algebras.
Fil: Campercholi, Miguel Alejandro Carlos. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vaggione, Diego Jose. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Algebraic Function
Discriminator
Quasiprimal Algebra
Equational Definability - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/32093
Ver los metadatos del registro completo
id |
CONICETDig_64d94e70ebd61023e463892c5eef5ada |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/32093 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Algebraic functions in quasiprimal algebrasCampercholi, Miguel Alejandro CarlosVaggione, Diego JoseAlgebraic FunctionDiscriminatorQuasiprimal AlgebraEquational Definabilityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A function is algebraic on an algebra math formula if it can be implicitly defined by a system of equations on math formula. In this note we give a semantic characterization for algebraic functions on quasiprimal algebras. This characterization is applied to obtain necessary and sufficient conditions for a quasiprimal algebra math formula to have every one of its algebraic functions be a term function. We also apply our results to particular algebras such as finite fields and monadic algebras.Fil: Campercholi, Miguel Alejandro Carlos. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vaggione, Diego Jose. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaWiley VCH Verlag2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32093Vaggione, Diego Jose; Campercholi, Miguel Alejandro Carlos; Algebraic functions in quasiprimal algebras; Wiley VCH Verlag; Mathematical Logic Quarterly; 60; 3; 4-2014; 154-1600942-5616CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/malq.201200060info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/malq.201200060/abstractinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:06Zoai:ri.conicet.gov.ar:11336/32093instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:06.955CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Algebraic functions in quasiprimal algebras |
title |
Algebraic functions in quasiprimal algebras |
spellingShingle |
Algebraic functions in quasiprimal algebras Campercholi, Miguel Alejandro Carlos Algebraic Function Discriminator Quasiprimal Algebra Equational Definability |
title_short |
Algebraic functions in quasiprimal algebras |
title_full |
Algebraic functions in quasiprimal algebras |
title_fullStr |
Algebraic functions in quasiprimal algebras |
title_full_unstemmed |
Algebraic functions in quasiprimal algebras |
title_sort |
Algebraic functions in quasiprimal algebras |
dc.creator.none.fl_str_mv |
Campercholi, Miguel Alejandro Carlos Vaggione, Diego Jose |
author |
Campercholi, Miguel Alejandro Carlos |
author_facet |
Campercholi, Miguel Alejandro Carlos Vaggione, Diego Jose |
author_role |
author |
author2 |
Vaggione, Diego Jose |
author2_role |
author |
dc.subject.none.fl_str_mv |
Algebraic Function Discriminator Quasiprimal Algebra Equational Definability |
topic |
Algebraic Function Discriminator Quasiprimal Algebra Equational Definability |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A function is algebraic on an algebra math formula if it can be implicitly defined by a system of equations on math formula. In this note we give a semantic characterization for algebraic functions on quasiprimal algebras. This characterization is applied to obtain necessary and sufficient conditions for a quasiprimal algebra math formula to have every one of its algebraic functions be a term function. We also apply our results to particular algebras such as finite fields and monadic algebras. Fil: Campercholi, Miguel Alejandro Carlos. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Vaggione, Diego Jose. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
A function is algebraic on an algebra math formula if it can be implicitly defined by a system of equations on math formula. In this note we give a semantic characterization for algebraic functions on quasiprimal algebras. This characterization is applied to obtain necessary and sufficient conditions for a quasiprimal algebra math formula to have every one of its algebraic functions be a term function. We also apply our results to particular algebras such as finite fields and monadic algebras. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/32093 Vaggione, Diego Jose; Campercholi, Miguel Alejandro Carlos; Algebraic functions in quasiprimal algebras; Wiley VCH Verlag; Mathematical Logic Quarterly; 60; 3; 4-2014; 154-160 0942-5616 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/32093 |
identifier_str_mv |
Vaggione, Diego Jose; Campercholi, Miguel Alejandro Carlos; Algebraic functions in quasiprimal algebras; Wiley VCH Verlag; Mathematical Logic Quarterly; 60; 3; 4-2014; 154-160 0942-5616 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/malq.201200060 info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/malq.201200060/abstract |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley VCH Verlag |
publisher.none.fl_str_mv |
Wiley VCH Verlag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269561577013248 |
score |
13.13397 |