Algebraic functions in quasiprimal algebras

Autores
Campercholi, Miguel Alejandro Carlos; Vaggione, Diego Jose
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A function is algebraic on an algebra math formula if it can be implicitly defined by a system of equations on math formula. In this note we give a semantic characterization for algebraic functions on quasiprimal algebras. This characterization is applied to obtain necessary and sufficient conditions for a quasiprimal algebra math formula to have every one of its algebraic functions be a term function. We also apply our results to particular algebras such as finite fields and monadic algebras.
Fil: Campercholi, Miguel Alejandro Carlos. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vaggione, Diego Jose. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Algebraic Function
Discriminator
Quasiprimal Algebra
Equational Definability
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/32093

id CONICETDig_64d94e70ebd61023e463892c5eef5ada
oai_identifier_str oai:ri.conicet.gov.ar:11336/32093
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Algebraic functions in quasiprimal algebrasCampercholi, Miguel Alejandro CarlosVaggione, Diego JoseAlgebraic FunctionDiscriminatorQuasiprimal AlgebraEquational Definabilityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A function is algebraic on an algebra math formula if it can be implicitly defined by a system of equations on math formula. In this note we give a semantic characterization for algebraic functions on quasiprimal algebras. This characterization is applied to obtain necessary and sufficient conditions for a quasiprimal algebra math formula to have every one of its algebraic functions be a term function. We also apply our results to particular algebras such as finite fields and monadic algebras.Fil: Campercholi, Miguel Alejandro Carlos. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vaggione, Diego Jose. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaWiley VCH Verlag2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32093Vaggione, Diego Jose; Campercholi, Miguel Alejandro Carlos; Algebraic functions in quasiprimal algebras; Wiley VCH Verlag; Mathematical Logic Quarterly; 60; 3; 4-2014; 154-1600942-5616CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/malq.201200060info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/malq.201200060/abstractinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:06Zoai:ri.conicet.gov.ar:11336/32093instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:06.955CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Algebraic functions in quasiprimal algebras
title Algebraic functions in quasiprimal algebras
spellingShingle Algebraic functions in quasiprimal algebras
Campercholi, Miguel Alejandro Carlos
Algebraic Function
Discriminator
Quasiprimal Algebra
Equational Definability
title_short Algebraic functions in quasiprimal algebras
title_full Algebraic functions in quasiprimal algebras
title_fullStr Algebraic functions in quasiprimal algebras
title_full_unstemmed Algebraic functions in quasiprimal algebras
title_sort Algebraic functions in quasiprimal algebras
dc.creator.none.fl_str_mv Campercholi, Miguel Alejandro Carlos
Vaggione, Diego Jose
author Campercholi, Miguel Alejandro Carlos
author_facet Campercholi, Miguel Alejandro Carlos
Vaggione, Diego Jose
author_role author
author2 Vaggione, Diego Jose
author2_role author
dc.subject.none.fl_str_mv Algebraic Function
Discriminator
Quasiprimal Algebra
Equational Definability
topic Algebraic Function
Discriminator
Quasiprimal Algebra
Equational Definability
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A function is algebraic on an algebra math formula if it can be implicitly defined by a system of equations on math formula. In this note we give a semantic characterization for algebraic functions on quasiprimal algebras. This characterization is applied to obtain necessary and sufficient conditions for a quasiprimal algebra math formula to have every one of its algebraic functions be a term function. We also apply our results to particular algebras such as finite fields and monadic algebras.
Fil: Campercholi, Miguel Alejandro Carlos. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vaggione, Diego Jose. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description A function is algebraic on an algebra math formula if it can be implicitly defined by a system of equations on math formula. In this note we give a semantic characterization for algebraic functions on quasiprimal algebras. This characterization is applied to obtain necessary and sufficient conditions for a quasiprimal algebra math formula to have every one of its algebraic functions be a term function. We also apply our results to particular algebras such as finite fields and monadic algebras.
publishDate 2014
dc.date.none.fl_str_mv 2014-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/32093
Vaggione, Diego Jose; Campercholi, Miguel Alejandro Carlos; Algebraic functions in quasiprimal algebras; Wiley VCH Verlag; Mathematical Logic Quarterly; 60; 3; 4-2014; 154-160
0942-5616
CONICET Digital
CONICET
url http://hdl.handle.net/11336/32093
identifier_str_mv Vaggione, Diego Jose; Campercholi, Miguel Alejandro Carlos; Algebraic functions in quasiprimal algebras; Wiley VCH Verlag; Mathematical Logic Quarterly; 60; 3; 4-2014; 154-160
0942-5616
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/malq.201200060
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/malq.201200060/abstract
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley VCH Verlag
publisher.none.fl_str_mv Wiley VCH Verlag
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269561577013248
score 13.13397