Projective resolutions of associative algebras and ambiguities
- Autores
- Chouhy, Sergio Nicolás; Solotar, Andrea Leonor
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The aim of this article is to give a method to construct bimodule resolutions of associative algebras, generalizing Bardzell's well-known resolution of monomial algebras. We stress that this method leads to concrete computations, providing thus a useful tool for computing invariants associated to the considered algebras. We illustrate how to use it by giving several examples in the last section of the article. In particular we give necessary and sufficient conditions for noetherian down–up algebras to be 3-Calabi–Yau.
Fil: Chouhy, Sergio Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Fil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina - Materia
-
Hochschild Cohomology
Resolution
Homology Theory - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18868
Ver los metadatos del registro completo
id |
CONICETDig_ec4f9a67f9ba77f1d8bbcba750c95347 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18868 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Projective resolutions of associative algebras and ambiguitiesChouhy, Sergio NicolásSolotar, Andrea LeonorHochschild CohomologyResolutionHomology Theoryhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The aim of this article is to give a method to construct bimodule resolutions of associative algebras, generalizing Bardzell's well-known resolution of monomial algebras. We stress that this method leads to concrete computations, providing thus a useful tool for computing invariants associated to the considered algebras. We illustrate how to use it by giving several examples in the last section of the article. In particular we give necessary and sufficient conditions for noetherian down–up algebras to be 3-Calabi–Yau.Fil: Chouhy, Sergio Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaFil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaElsevier Inc2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18868Chouhy, Sergio Nicolás; Solotar, Andrea Leonor; Projective resolutions of associative algebras and ambiguities; Elsevier Inc; Journal Of Algebra; 432; 6-2015; 22-610021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2015.02.019info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S002186931500109Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:42:22Zoai:ri.conicet.gov.ar:11336/18868instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:42:22.923CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Projective resolutions of associative algebras and ambiguities |
title |
Projective resolutions of associative algebras and ambiguities |
spellingShingle |
Projective resolutions of associative algebras and ambiguities Chouhy, Sergio Nicolás Hochschild Cohomology Resolution Homology Theory |
title_short |
Projective resolutions of associative algebras and ambiguities |
title_full |
Projective resolutions of associative algebras and ambiguities |
title_fullStr |
Projective resolutions of associative algebras and ambiguities |
title_full_unstemmed |
Projective resolutions of associative algebras and ambiguities |
title_sort |
Projective resolutions of associative algebras and ambiguities |
dc.creator.none.fl_str_mv |
Chouhy, Sergio Nicolás Solotar, Andrea Leonor |
author |
Chouhy, Sergio Nicolás |
author_facet |
Chouhy, Sergio Nicolás Solotar, Andrea Leonor |
author_role |
author |
author2 |
Solotar, Andrea Leonor |
author2_role |
author |
dc.subject.none.fl_str_mv |
Hochschild Cohomology Resolution Homology Theory |
topic |
Hochschild Cohomology Resolution Homology Theory |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The aim of this article is to give a method to construct bimodule resolutions of associative algebras, generalizing Bardzell's well-known resolution of monomial algebras. We stress that this method leads to concrete computations, providing thus a useful tool for computing invariants associated to the considered algebras. We illustrate how to use it by giving several examples in the last section of the article. In particular we give necessary and sufficient conditions for noetherian down–up algebras to be 3-Calabi–Yau. Fil: Chouhy, Sergio Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina Fil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina |
description |
The aim of this article is to give a method to construct bimodule resolutions of associative algebras, generalizing Bardzell's well-known resolution of monomial algebras. We stress that this method leads to concrete computations, providing thus a useful tool for computing invariants associated to the considered algebras. We illustrate how to use it by giving several examples in the last section of the article. In particular we give necessary and sufficient conditions for noetherian down–up algebras to be 3-Calabi–Yau. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18868 Chouhy, Sergio Nicolás; Solotar, Andrea Leonor; Projective resolutions of associative algebras and ambiguities; Elsevier Inc; Journal Of Algebra; 432; 6-2015; 22-61 0021-8693 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18868 |
identifier_str_mv |
Chouhy, Sergio Nicolás; Solotar, Andrea Leonor; Projective resolutions of associative algebras and ambiguities; Elsevier Inc; Journal Of Algebra; 432; 6-2015; 22-61 0021-8693 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2015.02.019 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S002186931500109X |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Inc |
publisher.none.fl_str_mv |
Elsevier Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083532174131200 |
score |
13.22299 |