Projective resolutions of associative algebras and ambiguities

Autores
Chouhy, Sergio Nicolás; Solotar, Andrea Leonor
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The aim of this article is to give a method to construct bimodule resolutions of associative algebras, generalizing Bardzell's well-known resolution of monomial algebras. We stress that this method leads to concrete computations, providing thus a useful tool for computing invariants associated to the considered algebras. We illustrate how to use it by giving several examples in the last section of the article. In particular we give necessary and sufficient conditions for noetherian down–up algebras to be 3-Calabi–Yau.
Fil: Chouhy, Sergio Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Fil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Materia
Hochschild Cohomology
Resolution
Homology Theory
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18868

id CONICETDig_ec4f9a67f9ba77f1d8bbcba750c95347
oai_identifier_str oai:ri.conicet.gov.ar:11336/18868
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Projective resolutions of associative algebras and ambiguitiesChouhy, Sergio NicolásSolotar, Andrea LeonorHochschild CohomologyResolutionHomology Theoryhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The aim of this article is to give a method to construct bimodule resolutions of associative algebras, generalizing Bardzell's well-known resolution of monomial algebras. We stress that this method leads to concrete computations, providing thus a useful tool for computing invariants associated to the considered algebras. We illustrate how to use it by giving several examples in the last section of the article. In particular we give necessary and sufficient conditions for noetherian down–up algebras to be 3-Calabi–Yau.Fil: Chouhy, Sergio Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaFil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaElsevier Inc2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18868Chouhy, Sergio Nicolás; Solotar, Andrea Leonor; Projective resolutions of associative algebras and ambiguities; Elsevier Inc; Journal Of Algebra; 432; 6-2015; 22-610021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2015.02.019info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S002186931500109Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:42:22Zoai:ri.conicet.gov.ar:11336/18868instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:42:22.923CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Projective resolutions of associative algebras and ambiguities
title Projective resolutions of associative algebras and ambiguities
spellingShingle Projective resolutions of associative algebras and ambiguities
Chouhy, Sergio Nicolás
Hochschild Cohomology
Resolution
Homology Theory
title_short Projective resolutions of associative algebras and ambiguities
title_full Projective resolutions of associative algebras and ambiguities
title_fullStr Projective resolutions of associative algebras and ambiguities
title_full_unstemmed Projective resolutions of associative algebras and ambiguities
title_sort Projective resolutions of associative algebras and ambiguities
dc.creator.none.fl_str_mv Chouhy, Sergio Nicolás
Solotar, Andrea Leonor
author Chouhy, Sergio Nicolás
author_facet Chouhy, Sergio Nicolás
Solotar, Andrea Leonor
author_role author
author2 Solotar, Andrea Leonor
author2_role author
dc.subject.none.fl_str_mv Hochschild Cohomology
Resolution
Homology Theory
topic Hochschild Cohomology
Resolution
Homology Theory
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The aim of this article is to give a method to construct bimodule resolutions of associative algebras, generalizing Bardzell's well-known resolution of monomial algebras. We stress that this method leads to concrete computations, providing thus a useful tool for computing invariants associated to the considered algebras. We illustrate how to use it by giving several examples in the last section of the article. In particular we give necessary and sufficient conditions for noetherian down–up algebras to be 3-Calabi–Yau.
Fil: Chouhy, Sergio Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Fil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
description The aim of this article is to give a method to construct bimodule resolutions of associative algebras, generalizing Bardzell's well-known resolution of monomial algebras. We stress that this method leads to concrete computations, providing thus a useful tool for computing invariants associated to the considered algebras. We illustrate how to use it by giving several examples in the last section of the article. In particular we give necessary and sufficient conditions for noetherian down–up algebras to be 3-Calabi–Yau.
publishDate 2015
dc.date.none.fl_str_mv 2015-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18868
Chouhy, Sergio Nicolás; Solotar, Andrea Leonor; Projective resolutions of associative algebras and ambiguities; Elsevier Inc; Journal Of Algebra; 432; 6-2015; 22-61
0021-8693
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18868
identifier_str_mv Chouhy, Sergio Nicolás; Solotar, Andrea Leonor; Projective resolutions of associative algebras and ambiguities; Elsevier Inc; Journal Of Algebra; 432; 6-2015; 22-61
0021-8693
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2015.02.019
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S002186931500109X
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Inc
publisher.none.fl_str_mv Elsevier Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083532174131200
score 13.22299