Hochschild cohomology of triangular matrix algebras

Autores
Michelena, Sandra; Platzeck, Maria Ines
Año de publicación
2000
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the Hochschild cohomology of triangular matrix rings B=R0AMRA , where A and R are finite dimensional algebras over an algebraically closed field K and M is an A-R-bimodule. We prove the existence of two long exact sequences of K-vector spaces relating the Hochschild cohomology of A, R, and B. © 2000 Academic Press.
Fil: Michelena, Sandra. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Fil: Platzeck, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Materia
Hochschild Cohomology
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/78497

id CONICETDig_5d0cfd46efafddd03b54801db42d73e6
oai_identifier_str oai:ri.conicet.gov.ar:11336/78497
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Hochschild cohomology of triangular matrix algebrasMichelena, SandraPlatzeck, Maria InesHochschild Cohomologyhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the Hochschild cohomology of triangular matrix rings B=R0AMRA , where A and R are finite dimensional algebras over an algebraically closed field K and M is an A-R-bimodule. We prove the existence of two long exact sequences of K-vector spaces relating the Hochschild cohomology of A, R, and B. © 2000 Academic Press.Fil: Michelena, Sandra. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaFil: Platzeck, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaAcademic Press Inc Elsevier Science2000-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/78497Michelena, Sandra; Platzeck, Maria Ines; Hochschild cohomology of triangular matrix algebras; Academic Press Inc Elsevier Science; Journal of Algebra; 233; 2; 11-2000; 502-5250021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1006/jabr.2000.8423info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869300984230info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:44:18Zoai:ri.conicet.gov.ar:11336/78497instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:44:18.434CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Hochschild cohomology of triangular matrix algebras
title Hochschild cohomology of triangular matrix algebras
spellingShingle Hochschild cohomology of triangular matrix algebras
Michelena, Sandra
Hochschild Cohomology
title_short Hochschild cohomology of triangular matrix algebras
title_full Hochschild cohomology of triangular matrix algebras
title_fullStr Hochschild cohomology of triangular matrix algebras
title_full_unstemmed Hochschild cohomology of triangular matrix algebras
title_sort Hochschild cohomology of triangular matrix algebras
dc.creator.none.fl_str_mv Michelena, Sandra
Platzeck, Maria Ines
author Michelena, Sandra
author_facet Michelena, Sandra
Platzeck, Maria Ines
author_role author
author2 Platzeck, Maria Ines
author2_role author
dc.subject.none.fl_str_mv Hochschild Cohomology
topic Hochschild Cohomology
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the Hochschild cohomology of triangular matrix rings B=R0AMRA , where A and R are finite dimensional algebras over an algebraically closed field K and M is an A-R-bimodule. We prove the existence of two long exact sequences of K-vector spaces relating the Hochschild cohomology of A, R, and B. © 2000 Academic Press.
Fil: Michelena, Sandra. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Fil: Platzeck, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina
description We study the Hochschild cohomology of triangular matrix rings B=R0AMRA , where A and R are finite dimensional algebras over an algebraically closed field K and M is an A-R-bimodule. We prove the existence of two long exact sequences of K-vector spaces relating the Hochschild cohomology of A, R, and B. © 2000 Academic Press.
publishDate 2000
dc.date.none.fl_str_mv 2000-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/78497
Michelena, Sandra; Platzeck, Maria Ines; Hochschild cohomology of triangular matrix algebras; Academic Press Inc Elsevier Science; Journal of Algebra; 233; 2; 11-2000; 502-525
0021-8693
CONICET Digital
CONICET
url http://hdl.handle.net/11336/78497
identifier_str_mv Michelena, Sandra; Platzeck, Maria Ines; Hochschild cohomology of triangular matrix algebras; Academic Press Inc Elsevier Science; Journal of Algebra; 233; 2; 11-2000; 502-525
0021-8693
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1006/jabr.2000.8423
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869300984230
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614480598663168
score 13.070432