Smart sampling for lightweight verification of markov decision processes
- Autores
- D'argenio, Pedro Ruben; Legay, Axel; Sedwards, Sean; Traonouez, Louis-Marie
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Markov decision processes (MDP) are useful to model optimisation problems in concurrent systems. To verify MDPs with efficient Monte Carlo techniques requires that their nondeterminism be resolved by a scheduler. Recent work has introduced the elements of lightweight techniques to sample directly from scheduler space, but finding optimal schedulers by simple sampling may be inefficient. Here we describe “smart” sampling algorithms that can make substantial improvements in performance.
Fil: D'argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba; Argentina
Fil: Legay, Axel. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Sedwards, Sean. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Traonouez, Louis-Marie. Institut National de Recherche en Informatique et en Automatique; Francia - Materia
-
Nondeterminism
Sampling
Statistical Model Checking - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/69333
Ver los metadatos del registro completo
id |
CONICETDig_ebd3253a07595b61021a3d9fb233665a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/69333 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Smart sampling for lightweight verification of markov decision processesD'argenio, Pedro RubenLegay, AxelSedwards, SeanTraonouez, Louis-MarieNondeterminismSamplingStatistical Model Checkinghttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Markov decision processes (MDP) are useful to model optimisation problems in concurrent systems. To verify MDPs with efficient Monte Carlo techniques requires that their nondeterminism be resolved by a scheduler. Recent work has introduced the elements of lightweight techniques to sample directly from scheduler space, but finding optimal schedulers by simple sampling may be inefficient. Here we describe “smart” sampling algorithms that can make substantial improvements in performance.Fil: D'argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Legay, Axel. Institut National de Recherche en Informatique et en Automatique; FranciaFil: Sedwards, Sean. Institut National de Recherche en Informatique et en Automatique; FranciaFil: Traonouez, Louis-Marie. Institut National de Recherche en Informatique et en Automatique; FranciaSpringer Verlag2015-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/69333D'argenio, Pedro Ruben; Legay, Axel; Sedwards, Sean; Traonouez, Louis-Marie; Smart sampling for lightweight verification of markov decision processes; Springer Verlag; International Journal on Software Tools for Technology Transfer; 17; 4; 8-2015; 469-4841433-2787CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10009-015-0383-0info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10009-015-0383-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:09:43Zoai:ri.conicet.gov.ar:11336/69333instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:09:43.522CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Smart sampling for lightweight verification of markov decision processes |
title |
Smart sampling for lightweight verification of markov decision processes |
spellingShingle |
Smart sampling for lightweight verification of markov decision processes D'argenio, Pedro Ruben Nondeterminism Sampling Statistical Model Checking |
title_short |
Smart sampling for lightweight verification of markov decision processes |
title_full |
Smart sampling for lightweight verification of markov decision processes |
title_fullStr |
Smart sampling for lightweight verification of markov decision processes |
title_full_unstemmed |
Smart sampling for lightweight verification of markov decision processes |
title_sort |
Smart sampling for lightweight verification of markov decision processes |
dc.creator.none.fl_str_mv |
D'argenio, Pedro Ruben Legay, Axel Sedwards, Sean Traonouez, Louis-Marie |
author |
D'argenio, Pedro Ruben |
author_facet |
D'argenio, Pedro Ruben Legay, Axel Sedwards, Sean Traonouez, Louis-Marie |
author_role |
author |
author2 |
Legay, Axel Sedwards, Sean Traonouez, Louis-Marie |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Nondeterminism Sampling Statistical Model Checking |
topic |
Nondeterminism Sampling Statistical Model Checking |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Markov decision processes (MDP) are useful to model optimisation problems in concurrent systems. To verify MDPs with efficient Monte Carlo techniques requires that their nondeterminism be resolved by a scheduler. Recent work has introduced the elements of lightweight techniques to sample directly from scheduler space, but finding optimal schedulers by simple sampling may be inefficient. Here we describe “smart” sampling algorithms that can make substantial improvements in performance. Fil: D'argenio, Pedro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba; Argentina Fil: Legay, Axel. Institut National de Recherche en Informatique et en Automatique; Francia Fil: Sedwards, Sean. Institut National de Recherche en Informatique et en Automatique; Francia Fil: Traonouez, Louis-Marie. Institut National de Recherche en Informatique et en Automatique; Francia |
description |
Markov decision processes (MDP) are useful to model optimisation problems in concurrent systems. To verify MDPs with efficient Monte Carlo techniques requires that their nondeterminism be resolved by a scheduler. Recent work has introduced the elements of lightweight techniques to sample directly from scheduler space, but finding optimal schedulers by simple sampling may be inefficient. Here we describe “smart” sampling algorithms that can make substantial improvements in performance. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/69333 D'argenio, Pedro Ruben; Legay, Axel; Sedwards, Sean; Traonouez, Louis-Marie; Smart sampling for lightweight verification of markov decision processes; Springer Verlag; International Journal on Software Tools for Technology Transfer; 17; 4; 8-2015; 469-484 1433-2787 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/69333 |
identifier_str_mv |
D'argenio, Pedro Ruben; Legay, Axel; Sedwards, Sean; Traonouez, Louis-Marie; Smart sampling for lightweight verification of markov decision processes; Springer Verlag; International Journal on Software Tools for Technology Transfer; 17; 4; 8-2015; 469-484 1433-2787 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10009-015-0383-0 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10009-015-0383-0 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083245084508160 |
score |
13.22299 |