Bisimulations for non-deterministic labelled Markov processes
- Autores
- D'argenio, Pedro Ruben; Sanchez Terraf, Pedro Octavio; Wolovick, Nicolás
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We extend the theory of labelled Markov processes to include internal non-determinism, which is a fundamental concept for the further development of a process theory with abstraction on non-deterministic continuous probabilistic systems. We define non-deterministic labelled Markov processes (NLMP) and provide three definitions of bisimulations: a bisimulation following a traditional characterisation; a state-based bisimulation tailored to our 'measurable' non-determinism; and an event-based bisimulation. We show the relations between them, including the fact that the largest state bisimulation is also an event bisimulation. We also introduce a variation of the Hennessy-Milner logic that characterises event bisimulation and is sound with respect to the other bisimulations for an arbitrary NLMP. This logic, however, is infinitary as it contains a denumerable. We then introduce a finitary sublogic that characterises all bisimulations for an image finite NLMP whose underlying measure space is also analytic. Hence, in this setting, all the notions of bisimulation we consider turn out to be equal. Finally, we show that all these bisimulation notions are different in the general case. The counterexamples that separate them turn out to be non-probabilistic NLMPs.
Fil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Sanchez Terraf, Pedro Octavio. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Wolovick, Nicolás. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina - Materia
-
PROCESS SEMANTICS
CONTINUOUS PROBABILITY
BISIMULATION
MEASURE THEORY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/197265
Ver los metadatos del registro completo
id |
CONICETDig_7e8177b0719a58a75dc22e779f696c18 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/197265 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Bisimulations for non-deterministic labelled Markov processesD'argenio, Pedro RubenSanchez Terraf, Pedro OctavioWolovick, NicolásPROCESS SEMANTICSCONTINUOUS PROBABILITYBISIMULATIONMEASURE THEORYhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1We extend the theory of labelled Markov processes to include internal non-determinism, which is a fundamental concept for the further development of a process theory with abstraction on non-deterministic continuous probabilistic systems. We define non-deterministic labelled Markov processes (NLMP) and provide three definitions of bisimulations: a bisimulation following a traditional characterisation; a state-based bisimulation tailored to our 'measurable' non-determinism; and an event-based bisimulation. We show the relations between them, including the fact that the largest state bisimulation is also an event bisimulation. We also introduce a variation of the Hennessy-Milner logic that characterises event bisimulation and is sound with respect to the other bisimulations for an arbitrary NLMP. This logic, however, is infinitary as it contains a denumerable. We then introduce a finitary sublogic that characterises all bisimulations for an image finite NLMP whose underlying measure space is also analytic. Hence, in this setting, all the notions of bisimulation we consider turn out to be equal. Finally, we show that all these bisimulation notions are different in the general case. The counterexamples that separate them turn out to be non-probabilistic NLMPs.Fil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Sanchez Terraf, Pedro Octavio. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Wolovick, Nicolás. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaCambridge University Press2012-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/197265D'argenio, Pedro Ruben; Sanchez Terraf, Pedro Octavio; Wolovick, Nicolás; Bisimulations for non-deterministic labelled Markov processes; Cambridge University Press; Mathematical Structures In Computer Science; 22; 1; 2-2012; 43-680960-1295CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8459011info:eu-repo/semantics/altIdentifier/doi/10.1017/S0960129511000454info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:10Zoai:ri.conicet.gov.ar:11336/197265instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:10.794CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Bisimulations for non-deterministic labelled Markov processes |
title |
Bisimulations for non-deterministic labelled Markov processes |
spellingShingle |
Bisimulations for non-deterministic labelled Markov processes D'argenio, Pedro Ruben PROCESS SEMANTICS CONTINUOUS PROBABILITY BISIMULATION MEASURE THEORY |
title_short |
Bisimulations for non-deterministic labelled Markov processes |
title_full |
Bisimulations for non-deterministic labelled Markov processes |
title_fullStr |
Bisimulations for non-deterministic labelled Markov processes |
title_full_unstemmed |
Bisimulations for non-deterministic labelled Markov processes |
title_sort |
Bisimulations for non-deterministic labelled Markov processes |
dc.creator.none.fl_str_mv |
D'argenio, Pedro Ruben Sanchez Terraf, Pedro Octavio Wolovick, Nicolás |
author |
D'argenio, Pedro Ruben |
author_facet |
D'argenio, Pedro Ruben Sanchez Terraf, Pedro Octavio Wolovick, Nicolás |
author_role |
author |
author2 |
Sanchez Terraf, Pedro Octavio Wolovick, Nicolás |
author2_role |
author author |
dc.subject.none.fl_str_mv |
PROCESS SEMANTICS CONTINUOUS PROBABILITY BISIMULATION MEASURE THEORY |
topic |
PROCESS SEMANTICS CONTINUOUS PROBABILITY BISIMULATION MEASURE THEORY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We extend the theory of labelled Markov processes to include internal non-determinism, which is a fundamental concept for the further development of a process theory with abstraction on non-deterministic continuous probabilistic systems. We define non-deterministic labelled Markov processes (NLMP) and provide three definitions of bisimulations: a bisimulation following a traditional characterisation; a state-based bisimulation tailored to our 'measurable' non-determinism; and an event-based bisimulation. We show the relations between them, including the fact that the largest state bisimulation is also an event bisimulation. We also introduce a variation of the Hennessy-Milner logic that characterises event bisimulation and is sound with respect to the other bisimulations for an arbitrary NLMP. This logic, however, is infinitary as it contains a denumerable. We then introduce a finitary sublogic that characterises all bisimulations for an image finite NLMP whose underlying measure space is also analytic. Hence, in this setting, all the notions of bisimulation we consider turn out to be equal. Finally, we show that all these bisimulation notions are different in the general case. The counterexamples that separate them turn out to be non-probabilistic NLMPs. Fil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Sanchez Terraf, Pedro Octavio. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Wolovick, Nicolás. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina |
description |
We extend the theory of labelled Markov processes to include internal non-determinism, which is a fundamental concept for the further development of a process theory with abstraction on non-deterministic continuous probabilistic systems. We define non-deterministic labelled Markov processes (NLMP) and provide three definitions of bisimulations: a bisimulation following a traditional characterisation; a state-based bisimulation tailored to our 'measurable' non-determinism; and an event-based bisimulation. We show the relations between them, including the fact that the largest state bisimulation is also an event bisimulation. We also introduce a variation of the Hennessy-Milner logic that characterises event bisimulation and is sound with respect to the other bisimulations for an arbitrary NLMP. This logic, however, is infinitary as it contains a denumerable. We then introduce a finitary sublogic that characterises all bisimulations for an image finite NLMP whose underlying measure space is also analytic. Hence, in this setting, all the notions of bisimulation we consider turn out to be equal. Finally, we show that all these bisimulation notions are different in the general case. The counterexamples that separate them turn out to be non-probabilistic NLMPs. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/197265 D'argenio, Pedro Ruben; Sanchez Terraf, Pedro Octavio; Wolovick, Nicolás; Bisimulations for non-deterministic labelled Markov processes; Cambridge University Press; Mathematical Structures In Computer Science; 22; 1; 2-2012; 43-68 0960-1295 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/197265 |
identifier_str_mv |
D'argenio, Pedro Ruben; Sanchez Terraf, Pedro Octavio; Wolovick, Nicolás; Bisimulations for non-deterministic labelled Markov processes; Cambridge University Press; Mathematical Structures In Computer Science; 22; 1; 2-2012; 43-68 0960-1295 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8459011 info:eu-repo/semantics/altIdentifier/doi/10.1017/S0960129511000454 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cambridge University Press |
publisher.none.fl_str_mv |
Cambridge University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269017770819584 |
score |
13.13397 |