Comparing Statistical, Analytical, and Learning-Based Routing Approaches for Delay-Tolerant Networks
- Autores
- D'argenio, Pedro Ruben; Fraire, Juan Andres; Hartmanns, Arnd; Raverta, Fernando Dario
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In delay-tolerant networks (DTNs) with uncertain contact plans, the communication episodes and their reliabilities are known a priori. To maximise the end-to-end delivery probability, a bounded network-wide number of message copies are allowed. The resulting multi-copy routing optimization problem is naturally modelled as a Markov decision process with distributed information. In this paper, we provide an in-depth comparison of three solution approaches: statistical model checking with scheduler sampling, the analytical RUCoP algorithm based on probabilistic model checking, and an implementation of concurrent Q-learning. We use an extensive benchmark set comprising random networks, scalable binomial topologies, and realistic ring-road low Earth orbit satellite networks. We evaluate the obtained message delivery probabilities as well as the computational effort. Our results show that all three approaches are suitable tools for obtaining reliable routes in DTN, and expose a tradeoff between scalability and solution quality.
Fil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Fraire, Juan Andres. Institut National de Recherche en Informatique et en Automatique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina
Fil: Hartmanns, Arnd. Universiteit Twente (ut);
Fil: Raverta, Fernando Dario. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina - Materia
-
DELAY TOLERANT NETWORKS
STATISTICAL MODEL CHECKING
Q-LEARNING
ROUTING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/273623
Ver los metadatos del registro completo
id |
CONICETDig_64cd9457f36ebe78950e8aaa0c75b120 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/273623 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Comparing Statistical, Analytical, and Learning-Based Routing Approaches for Delay-Tolerant NetworksD'argenio, Pedro RubenFraire, Juan AndresHartmanns, ArndRaverta, Fernando DarioDELAY TOLERANT NETWORKSSTATISTICAL MODEL CHECKINGQ-LEARNINGROUTINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In delay-tolerant networks (DTNs) with uncertain contact plans, the communication episodes and their reliabilities are known a priori. To maximise the end-to-end delivery probability, a bounded network-wide number of message copies are allowed. The resulting multi-copy routing optimization problem is naturally modelled as a Markov decision process with distributed information. In this paper, we provide an in-depth comparison of three solution approaches: statistical model checking with scheduler sampling, the analytical RUCoP algorithm based on probabilistic model checking, and an implementation of concurrent Q-learning. We use an extensive benchmark set comprising random networks, scalable binomial topologies, and realistic ring-road low Earth orbit satellite networks. We evaluate the obtained message delivery probabilities as well as the computational effort. Our results show that all three approaches are suitable tools for obtaining reliable routes in DTN, and expose a tradeoff between scalability and solution quality.Fil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Fraire, Juan Andres. Institut National de Recherche en Informatique et en Automatique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Hartmanns, Arnd. Universiteit Twente (ut);Fil: Raverta, Fernando Dario. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaAssociation for Computing Machinery2025-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/273623D'argenio, Pedro Ruben; Fraire, Juan Andres; Hartmanns, Arnd; Raverta, Fernando Dario; Comparing Statistical, Analytical, and Learning-Based Routing Approaches for Delay-Tolerant Networks; Association for Computing Machinery; Acm Transactions On Modeling And Computer Simulation; 35; 2; 4-2025; 1-261049-3301CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://dl.acm.org/doi/10.1145/3665927info:eu-repo/semantics/altIdentifier/doi/10.1145/3665927info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:46:35Zoai:ri.conicet.gov.ar:11336/273623instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:46:35.573CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Comparing Statistical, Analytical, and Learning-Based Routing Approaches for Delay-Tolerant Networks |
title |
Comparing Statistical, Analytical, and Learning-Based Routing Approaches for Delay-Tolerant Networks |
spellingShingle |
Comparing Statistical, Analytical, and Learning-Based Routing Approaches for Delay-Tolerant Networks D'argenio, Pedro Ruben DELAY TOLERANT NETWORKS STATISTICAL MODEL CHECKING Q-LEARNING ROUTING |
title_short |
Comparing Statistical, Analytical, and Learning-Based Routing Approaches for Delay-Tolerant Networks |
title_full |
Comparing Statistical, Analytical, and Learning-Based Routing Approaches for Delay-Tolerant Networks |
title_fullStr |
Comparing Statistical, Analytical, and Learning-Based Routing Approaches for Delay-Tolerant Networks |
title_full_unstemmed |
Comparing Statistical, Analytical, and Learning-Based Routing Approaches for Delay-Tolerant Networks |
title_sort |
Comparing Statistical, Analytical, and Learning-Based Routing Approaches for Delay-Tolerant Networks |
dc.creator.none.fl_str_mv |
D'argenio, Pedro Ruben Fraire, Juan Andres Hartmanns, Arnd Raverta, Fernando Dario |
author |
D'argenio, Pedro Ruben |
author_facet |
D'argenio, Pedro Ruben Fraire, Juan Andres Hartmanns, Arnd Raverta, Fernando Dario |
author_role |
author |
author2 |
Fraire, Juan Andres Hartmanns, Arnd Raverta, Fernando Dario |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
DELAY TOLERANT NETWORKS STATISTICAL MODEL CHECKING Q-LEARNING ROUTING |
topic |
DELAY TOLERANT NETWORKS STATISTICAL MODEL CHECKING Q-LEARNING ROUTING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In delay-tolerant networks (DTNs) with uncertain contact plans, the communication episodes and their reliabilities are known a priori. To maximise the end-to-end delivery probability, a bounded network-wide number of message copies are allowed. The resulting multi-copy routing optimization problem is naturally modelled as a Markov decision process with distributed information. In this paper, we provide an in-depth comparison of three solution approaches: statistical model checking with scheduler sampling, the analytical RUCoP algorithm based on probabilistic model checking, and an implementation of concurrent Q-learning. We use an extensive benchmark set comprising random networks, scalable binomial topologies, and realistic ring-road low Earth orbit satellite networks. We evaluate the obtained message delivery probabilities as well as the computational effort. Our results show that all three approaches are suitable tools for obtaining reliable routes in DTN, and expose a tradeoff between scalability and solution quality. Fil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Fraire, Juan Andres. Institut National de Recherche en Informatique et en Automatique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina Fil: Hartmanns, Arnd. Universiteit Twente (ut); Fil: Raverta, Fernando Dario. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina |
description |
In delay-tolerant networks (DTNs) with uncertain contact plans, the communication episodes and their reliabilities are known a priori. To maximise the end-to-end delivery probability, a bounded network-wide number of message copies are allowed. The resulting multi-copy routing optimization problem is naturally modelled as a Markov decision process with distributed information. In this paper, we provide an in-depth comparison of three solution approaches: statistical model checking with scheduler sampling, the analytical RUCoP algorithm based on probabilistic model checking, and an implementation of concurrent Q-learning. We use an extensive benchmark set comprising random networks, scalable binomial topologies, and realistic ring-road low Earth orbit satellite networks. We evaluate the obtained message delivery probabilities as well as the computational effort. Our results show that all three approaches are suitable tools for obtaining reliable routes in DTN, and expose a tradeoff between scalability and solution quality. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/273623 D'argenio, Pedro Ruben; Fraire, Juan Andres; Hartmanns, Arnd; Raverta, Fernando Dario; Comparing Statistical, Analytical, and Learning-Based Routing Approaches for Delay-Tolerant Networks; Association for Computing Machinery; Acm Transactions On Modeling And Computer Simulation; 35; 2; 4-2025; 1-26 1049-3301 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/273623 |
identifier_str_mv |
D'argenio, Pedro Ruben; Fraire, Juan Andres; Hartmanns, Arnd; Raverta, Fernando Dario; Comparing Statistical, Analytical, and Learning-Based Routing Approaches for Delay-Tolerant Networks; Association for Computing Machinery; Acm Transactions On Modeling And Computer Simulation; 35; 2; 4-2025; 1-26 1049-3301 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://dl.acm.org/doi/10.1145/3665927 info:eu-repo/semantics/altIdentifier/doi/10.1145/3665927 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Association for Computing Machinery |
publisher.none.fl_str_mv |
Association for Computing Machinery |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846782168171282432 |
score |
12.982451 |