Convergence of simultaneous distributed-boundary parabolic optimal control problems
- Autores
- Tarzia, Domingo Alberto; Bollo, Carolina María; Gariboldi, Claudia Maricel
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider a heat conduction problem S with mixed boundary conditions in a n-dimensional domain Ω with regular boundary Γ and a family of problems Sα, where the parameter α > 0 is the heat transfer coefficient on the portion of the boundary Γ1 . In relation to these state systems, we formulate simultaneous distributed-boundary optimal control problems on the internal energy g and the heat flux q on the complementary portion of the boundary Γ2 . We obtain existence and uniqueness of the optimal controls, the first order optimality conditions in terms of the adjoint state and the convergence of the optimal controls, the system and the adjoint states when the heat transfer coefficient α goes to infinity. Finally, we prove estimations between the simultaneous distributed-boundary optimal control and the distributed optimal control problem studied in a previous paper of the first author.
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral; Argentina
Fil: Bollo, Carolina María. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Matemática; Argentina
Fil: Gariboldi, Claudia Maricel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Matemática; Argentina - Materia
-
EXISTENCE AND UNIQUENESS
MIXED BOUNDARY CON-DITIONS
OPTIMAL CONTROL
OPTIMALITY CONDITIONS
PARABOLIC VARIATIONAL EQUALITIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/150582
Ver los metadatos del registro completo
id |
CONICETDig_656a5f708d4b6f4675be6bfa91682e9d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/150582 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Convergence of simultaneous distributed-boundary parabolic optimal control problemsTarzia, Domingo AlbertoBollo, Carolina MaríaGariboldi, Claudia MaricelEXISTENCE AND UNIQUENESSMIXED BOUNDARY CON-DITIONSOPTIMAL CONTROLOPTIMALITY CONDITIONSPARABOLIC VARIATIONAL EQUALITIEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider a heat conduction problem S with mixed boundary conditions in a n-dimensional domain Ω with regular boundary Γ and a family of problems Sα, where the parameter α > 0 is the heat transfer coefficient on the portion of the boundary Γ1 . In relation to these state systems, we formulate simultaneous distributed-boundary optimal control problems on the internal energy g and the heat flux q on the complementary portion of the boundary Γ2 . We obtain existence and uniqueness of the optimal controls, the first order optimality conditions in terms of the adjoint state and the convergence of the optimal controls, the system and the adjoint states when the heat transfer coefficient α goes to infinity. Finally, we prove estimations between the simultaneous distributed-boundary optimal control and the distributed optimal control problem studied in a previous paper of the first author.Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral; ArgentinaFil: Bollo, Carolina María. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Matemática; ArgentinaFil: Gariboldi, Claudia Maricel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Matemática; ArgentinaAmerican Institute of Mathematical Sciences2020-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/150582Tarzia, Domingo Alberto; Bollo, Carolina María; Gariboldi, Claudia Maricel; Convergence of simultaneous distributed-boundary parabolic optimal control problems; American Institute of Mathematical Sciences; Evolution Equations and Control Theory; 9; 4; 12-2020; 1187-12012163-24722163-2480CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3934/eect.2020045info:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org/article/doi/10.3934/eect.2020045info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1912.09157info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:41Zoai:ri.conicet.gov.ar:11336/150582instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:41.395CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Convergence of simultaneous distributed-boundary parabolic optimal control problems |
title |
Convergence of simultaneous distributed-boundary parabolic optimal control problems |
spellingShingle |
Convergence of simultaneous distributed-boundary parabolic optimal control problems Tarzia, Domingo Alberto EXISTENCE AND UNIQUENESS MIXED BOUNDARY CON-DITIONS OPTIMAL CONTROL OPTIMALITY CONDITIONS PARABOLIC VARIATIONAL EQUALITIES |
title_short |
Convergence of simultaneous distributed-boundary parabolic optimal control problems |
title_full |
Convergence of simultaneous distributed-boundary parabolic optimal control problems |
title_fullStr |
Convergence of simultaneous distributed-boundary parabolic optimal control problems |
title_full_unstemmed |
Convergence of simultaneous distributed-boundary parabolic optimal control problems |
title_sort |
Convergence of simultaneous distributed-boundary parabolic optimal control problems |
dc.creator.none.fl_str_mv |
Tarzia, Domingo Alberto Bollo, Carolina María Gariboldi, Claudia Maricel |
author |
Tarzia, Domingo Alberto |
author_facet |
Tarzia, Domingo Alberto Bollo, Carolina María Gariboldi, Claudia Maricel |
author_role |
author |
author2 |
Bollo, Carolina María Gariboldi, Claudia Maricel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
EXISTENCE AND UNIQUENESS MIXED BOUNDARY CON-DITIONS OPTIMAL CONTROL OPTIMALITY CONDITIONS PARABOLIC VARIATIONAL EQUALITIES |
topic |
EXISTENCE AND UNIQUENESS MIXED BOUNDARY CON-DITIONS OPTIMAL CONTROL OPTIMALITY CONDITIONS PARABOLIC VARIATIONAL EQUALITIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider a heat conduction problem S with mixed boundary conditions in a n-dimensional domain Ω with regular boundary Γ and a family of problems Sα, where the parameter α > 0 is the heat transfer coefficient on the portion of the boundary Γ1 . In relation to these state systems, we formulate simultaneous distributed-boundary optimal control problems on the internal energy g and the heat flux q on the complementary portion of the boundary Γ2 . We obtain existence and uniqueness of the optimal controls, the first order optimality conditions in terms of the adjoint state and the convergence of the optimal controls, the system and the adjoint states when the heat transfer coefficient α goes to infinity. Finally, we prove estimations between the simultaneous distributed-boundary optimal control and the distributed optimal control problem studied in a previous paper of the first author. Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral; Argentina Fil: Bollo, Carolina María. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Matemática; Argentina Fil: Gariboldi, Claudia Maricel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Matemática; Argentina |
description |
We consider a heat conduction problem S with mixed boundary conditions in a n-dimensional domain Ω with regular boundary Γ and a family of problems Sα, where the parameter α > 0 is the heat transfer coefficient on the portion of the boundary Γ1 . In relation to these state systems, we formulate simultaneous distributed-boundary optimal control problems on the internal energy g and the heat flux q on the complementary portion of the boundary Γ2 . We obtain existence and uniqueness of the optimal controls, the first order optimality conditions in terms of the adjoint state and the convergence of the optimal controls, the system and the adjoint states when the heat transfer coefficient α goes to infinity. Finally, we prove estimations between the simultaneous distributed-boundary optimal control and the distributed optimal control problem studied in a previous paper of the first author. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/150582 Tarzia, Domingo Alberto; Bollo, Carolina María; Gariboldi, Claudia Maricel; Convergence of simultaneous distributed-boundary parabolic optimal control problems; American Institute of Mathematical Sciences; Evolution Equations and Control Theory; 9; 4; 12-2020; 1187-1201 2163-2472 2163-2480 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/150582 |
identifier_str_mv |
Tarzia, Domingo Alberto; Bollo, Carolina María; Gariboldi, Claudia Maricel; Convergence of simultaneous distributed-boundary parabolic optimal control problems; American Institute of Mathematical Sciences; Evolution Equations and Control Theory; 9; 4; 12-2020; 1187-1201 2163-2472 2163-2480 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3934/eect.2020045 info:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org/article/doi/10.3934/eect.2020045 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1912.09157 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Mathematical Sciences |
publisher.none.fl_str_mv |
American Institute of Mathematical Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269359941091328 |
score |
13.13397 |