Unsupervised edge map scoring: A statistical complexity approach
- Autores
- Gimenez Romero, Javier Alejandro; Martinez, Jorge Alberto; Flesia, Ana Georgina
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We propose a new Statistical Complexity Measure (SCM) to qualify edge maps without Ground Truth (GT) knowledge. The measure is the product of two indices, an Equilibrium index E obtained by projecting the edge map into a family of edge patterns, and an Entropy index H, defined as a function of the Kolmogorov–Smirnov (KS) statistic. This new measure can be used for performance characterization which includes: (i) the specific evaluation of an algorithm (intra-technique process) in order to identify its best parameters and (ii) the comparison of different algorithms (inter-technique process) in order to classify them according to their quality. Results made over images of the South Florida and Berkeley databases show that our approach significantly improves over Pratt’s Figure of Merit (PFoM) which is the objective reference-based edge map evaluation standard, as it takes into account more features in its evaluation.
Fil: Gimenez Romero, Javier Alejandro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Martinez, Jorge Alberto. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Flesia, Ana Georgina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Unsupervised Quality Measure
Edge Maps
Statistical Complexity
Edge Patterns
Entropy
Kolmogorov–Smirnov Statistic - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/32174
Ver los metadatos del registro completo
id |
CONICETDig_eb666fa5446f4c3f4e17468e999fce9a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/32174 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Unsupervised edge map scoring: A statistical complexity approachGimenez Romero, Javier AlejandroMartinez, Jorge AlbertoFlesia, Ana GeorginaUnsupervised Quality MeasureEdge MapsStatistical ComplexityEdge PatternsEntropyKolmogorov–Smirnov Statistichttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We propose a new Statistical Complexity Measure (SCM) to qualify edge maps without Ground Truth (GT) knowledge. The measure is the product of two indices, an Equilibrium index E obtained by projecting the edge map into a family of edge patterns, and an Entropy index H, defined as a function of the Kolmogorov–Smirnov (KS) statistic. This new measure can be used for performance characterization which includes: (i) the specific evaluation of an algorithm (intra-technique process) in order to identify its best parameters and (ii) the comparison of different algorithms (inter-technique process) in order to classify them according to their quality. Results made over images of the South Florida and Berkeley databases show that our approach significantly improves over Pratt’s Figure of Merit (PFoM) which is the objective reference-based edge map evaluation standard, as it takes into account more features in its evaluation.Fil: Gimenez Romero, Javier Alejandro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martinez, Jorge Alberto. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Flesia, Ana Georgina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAcademic Press Inc Elsevier Science2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32174Gimenez Romero, Javier Alejandro; Flesia, Ana Georgina; Martinez, Jorge Alberto; Unsupervised edge map scoring: A statistical complexity approach; Academic Press Inc Elsevier Science; Computer Vision And Image Understanding; 122; 3-2014; 131-1421077-3142CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.cviu.2014.02.005info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1077314214000319info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:03Zoai:ri.conicet.gov.ar:11336/32174instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:03.619CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Unsupervised edge map scoring: A statistical complexity approach |
title |
Unsupervised edge map scoring: A statistical complexity approach |
spellingShingle |
Unsupervised edge map scoring: A statistical complexity approach Gimenez Romero, Javier Alejandro Unsupervised Quality Measure Edge Maps Statistical Complexity Edge Patterns Entropy Kolmogorov–Smirnov Statistic |
title_short |
Unsupervised edge map scoring: A statistical complexity approach |
title_full |
Unsupervised edge map scoring: A statistical complexity approach |
title_fullStr |
Unsupervised edge map scoring: A statistical complexity approach |
title_full_unstemmed |
Unsupervised edge map scoring: A statistical complexity approach |
title_sort |
Unsupervised edge map scoring: A statistical complexity approach |
dc.creator.none.fl_str_mv |
Gimenez Romero, Javier Alejandro Martinez, Jorge Alberto Flesia, Ana Georgina |
author |
Gimenez Romero, Javier Alejandro |
author_facet |
Gimenez Romero, Javier Alejandro Martinez, Jorge Alberto Flesia, Ana Georgina |
author_role |
author |
author2 |
Martinez, Jorge Alberto Flesia, Ana Georgina |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Unsupervised Quality Measure Edge Maps Statistical Complexity Edge Patterns Entropy Kolmogorov–Smirnov Statistic |
topic |
Unsupervised Quality Measure Edge Maps Statistical Complexity Edge Patterns Entropy Kolmogorov–Smirnov Statistic |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We propose a new Statistical Complexity Measure (SCM) to qualify edge maps without Ground Truth (GT) knowledge. The measure is the product of two indices, an Equilibrium index E obtained by projecting the edge map into a family of edge patterns, and an Entropy index H, defined as a function of the Kolmogorov–Smirnov (KS) statistic. This new measure can be used for performance characterization which includes: (i) the specific evaluation of an algorithm (intra-technique process) in order to identify its best parameters and (ii) the comparison of different algorithms (inter-technique process) in order to classify them according to their quality. Results made over images of the South Florida and Berkeley databases show that our approach significantly improves over Pratt’s Figure of Merit (PFoM) which is the objective reference-based edge map evaluation standard, as it takes into account more features in its evaluation. Fil: Gimenez Romero, Javier Alejandro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Martinez, Jorge Alberto. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Flesia, Ana Georgina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We propose a new Statistical Complexity Measure (SCM) to qualify edge maps without Ground Truth (GT) knowledge. The measure is the product of two indices, an Equilibrium index E obtained by projecting the edge map into a family of edge patterns, and an Entropy index H, defined as a function of the Kolmogorov–Smirnov (KS) statistic. This new measure can be used for performance characterization which includes: (i) the specific evaluation of an algorithm (intra-technique process) in order to identify its best parameters and (ii) the comparison of different algorithms (inter-technique process) in order to classify them according to their quality. Results made over images of the South Florida and Berkeley databases show that our approach significantly improves over Pratt’s Figure of Merit (PFoM) which is the objective reference-based edge map evaluation standard, as it takes into account more features in its evaluation. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/32174 Gimenez Romero, Javier Alejandro; Flesia, Ana Georgina; Martinez, Jorge Alberto; Unsupervised edge map scoring: A statistical complexity approach; Academic Press Inc Elsevier Science; Computer Vision And Image Understanding; 122; 3-2014; 131-142 1077-3142 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/32174 |
identifier_str_mv |
Gimenez Romero, Javier Alejandro; Flesia, Ana Georgina; Martinez, Jorge Alberto; Unsupervised edge map scoring: A statistical complexity approach; Academic Press Inc Elsevier Science; Computer Vision And Image Understanding; 122; 3-2014; 131-142 1077-3142 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cviu.2014.02.005 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1077314214000319 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269734294257664 |
score |
13.13397 |