Solving a multi-objective manufacturing cell scheduling problem with the consideration of warehouses using a simulated annealing based procedure
- Autores
- Toncovich, Adrián Andrés; Rossit, Daniel Alejandro; Frutos, Mariano; Rossit, Diego Gabriel
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The competition manufacturing companies face has driven the development of novel and efficient methods that enhance the decision making process. In this work, a specific flow shop scheduling problem of practical interest in the industry is presented and formalized using a mathematical programming model. The problem considers a manufacturing system arranged as a work cell that takes into account the transport operations of raw material and final products between the manufacturing cell and warehouses. For solving this problem, we present a multiobjective metaheuristic strategy based on simulated annealing, the Pareto Archived Simulated Annealing (PASA). We tested this strategy on two kinds of benchmark problem sets proposed by the authors. The first group is composed by small-sized problems. On these tests, PASA was able to obtain optimal or near-optimal solutions in significantly short computing times. In order to complete the analysis, we compared these results to the exact Pareto front of the instances obtained with augmented ε-constraint method. Then, we also tested the algorithm in a set of larger problems to evaluate its performance in more extensive search spaces. We performed this assessment through an analysis of the hypervolume metric. Both sets of tests showed the competitiveness of the Pareto Archived Simulated Annealing to efficiently solve this problem and obtain good quality solutions while using reasonable computational resources.
Fil: Toncovich, Adrián Andrés. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
Fil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
Fil: Rossit, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina - Materia
-
ANNEALING
FLOW-SHOP
MULTI-OBJECTIVE OPTIMIZATION
PARETO ARCHIVED SIMULATED
PRODUCTION SCHEDULING
WAREHOUSES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/112474
Ver los metadatos del registro completo
id |
CONICETDig_eb39e52e8ddcee8618c375ad723a2783 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/112474 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Solving a multi-objective manufacturing cell scheduling problem with the consideration of warehouses using a simulated annealing based procedureToncovich, Adrián AndrésRossit, Daniel AlejandroFrutos, MarianoRossit, Diego GabrielANNEALINGFLOW-SHOPMULTI-OBJECTIVE OPTIMIZATIONPARETO ARCHIVED SIMULATEDPRODUCTION SCHEDULINGWAREHOUSEShttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2The competition manufacturing companies face has driven the development of novel and efficient methods that enhance the decision making process. In this work, a specific flow shop scheduling problem of practical interest in the industry is presented and formalized using a mathematical programming model. The problem considers a manufacturing system arranged as a work cell that takes into account the transport operations of raw material and final products between the manufacturing cell and warehouses. For solving this problem, we present a multiobjective metaheuristic strategy based on simulated annealing, the Pareto Archived Simulated Annealing (PASA). We tested this strategy on two kinds of benchmark problem sets proposed by the authors. The first group is composed by small-sized problems. On these tests, PASA was able to obtain optimal or near-optimal solutions in significantly short computing times. In order to complete the analysis, we compared these results to the exact Pareto front of the instances obtained with augmented ε-constraint method. Then, we also tested the algorithm in a set of larger problems to evaluate its performance in more extensive search spaces. We performed this assessment through an analysis of the hypervolume metric. Both sets of tests showed the competitiveness of the Pareto Archived Simulated Annealing to efficiently solve this problem and obtain good quality solutions while using reasonable computational resources.Fil: Toncovich, Adrián Andrés. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Rossit, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaGrowing Science2019-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/112474Toncovich, Adrián Andrés; Rossit, Daniel Alejandro; Frutos, Mariano; Rossit, Diego Gabriel; Solving a multi-objective manufacturing cell scheduling problem with the consideration of warehouses using a simulated annealing based procedure; Growing Science; International Journal of Industrial Engineering Computations; 10; 1; 1-2019; 1-161923-29261923-2934CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://growingscience.com/beta/ijiec/2830-solving-a-multi-objective-manufacturing-cell-scheduling-problem-with-the-consideration-of-warehouses-using-a-simulated-annealing-based-procedure.htmlinfo:eu-repo/semantics/altIdentifier/doi/10.5267/j.ijiec.2018.6.001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:47:15Zoai:ri.conicet.gov.ar:11336/112474instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:47:15.678CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Solving a multi-objective manufacturing cell scheduling problem with the consideration of warehouses using a simulated annealing based procedure |
title |
Solving a multi-objective manufacturing cell scheduling problem with the consideration of warehouses using a simulated annealing based procedure |
spellingShingle |
Solving a multi-objective manufacturing cell scheduling problem with the consideration of warehouses using a simulated annealing based procedure Toncovich, Adrián Andrés ANNEALING FLOW-SHOP MULTI-OBJECTIVE OPTIMIZATION PARETO ARCHIVED SIMULATED PRODUCTION SCHEDULING WAREHOUSES |
title_short |
Solving a multi-objective manufacturing cell scheduling problem with the consideration of warehouses using a simulated annealing based procedure |
title_full |
Solving a multi-objective manufacturing cell scheduling problem with the consideration of warehouses using a simulated annealing based procedure |
title_fullStr |
Solving a multi-objective manufacturing cell scheduling problem with the consideration of warehouses using a simulated annealing based procedure |
title_full_unstemmed |
Solving a multi-objective manufacturing cell scheduling problem with the consideration of warehouses using a simulated annealing based procedure |
title_sort |
Solving a multi-objective manufacturing cell scheduling problem with the consideration of warehouses using a simulated annealing based procedure |
dc.creator.none.fl_str_mv |
Toncovich, Adrián Andrés Rossit, Daniel Alejandro Frutos, Mariano Rossit, Diego Gabriel |
author |
Toncovich, Adrián Andrés |
author_facet |
Toncovich, Adrián Andrés Rossit, Daniel Alejandro Frutos, Mariano Rossit, Diego Gabriel |
author_role |
author |
author2 |
Rossit, Daniel Alejandro Frutos, Mariano Rossit, Diego Gabriel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
ANNEALING FLOW-SHOP MULTI-OBJECTIVE OPTIMIZATION PARETO ARCHIVED SIMULATED PRODUCTION SCHEDULING WAREHOUSES |
topic |
ANNEALING FLOW-SHOP MULTI-OBJECTIVE OPTIMIZATION PARETO ARCHIVED SIMULATED PRODUCTION SCHEDULING WAREHOUSES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The competition manufacturing companies face has driven the development of novel and efficient methods that enhance the decision making process. In this work, a specific flow shop scheduling problem of practical interest in the industry is presented and formalized using a mathematical programming model. The problem considers a manufacturing system arranged as a work cell that takes into account the transport operations of raw material and final products between the manufacturing cell and warehouses. For solving this problem, we present a multiobjective metaheuristic strategy based on simulated annealing, the Pareto Archived Simulated Annealing (PASA). We tested this strategy on two kinds of benchmark problem sets proposed by the authors. The first group is composed by small-sized problems. On these tests, PASA was able to obtain optimal or near-optimal solutions in significantly short computing times. In order to complete the analysis, we compared these results to the exact Pareto front of the instances obtained with augmented ε-constraint method. Then, we also tested the algorithm in a set of larger problems to evaluate its performance in more extensive search spaces. We performed this assessment through an analysis of the hypervolume metric. Both sets of tests showed the competitiveness of the Pareto Archived Simulated Annealing to efficiently solve this problem and obtain good quality solutions while using reasonable computational resources. Fil: Toncovich, Adrián Andrés. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina Fil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina Fil: Rossit, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina |
description |
The competition manufacturing companies face has driven the development of novel and efficient methods that enhance the decision making process. In this work, a specific flow shop scheduling problem of practical interest in the industry is presented and formalized using a mathematical programming model. The problem considers a manufacturing system arranged as a work cell that takes into account the transport operations of raw material and final products between the manufacturing cell and warehouses. For solving this problem, we present a multiobjective metaheuristic strategy based on simulated annealing, the Pareto Archived Simulated Annealing (PASA). We tested this strategy on two kinds of benchmark problem sets proposed by the authors. The first group is composed by small-sized problems. On these tests, PASA was able to obtain optimal or near-optimal solutions in significantly short computing times. In order to complete the analysis, we compared these results to the exact Pareto front of the instances obtained with augmented ε-constraint method. Then, we also tested the algorithm in a set of larger problems to evaluate its performance in more extensive search spaces. We performed this assessment through an analysis of the hypervolume metric. Both sets of tests showed the competitiveness of the Pareto Archived Simulated Annealing to efficiently solve this problem and obtain good quality solutions while using reasonable computational resources. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/112474 Toncovich, Adrián Andrés; Rossit, Daniel Alejandro; Frutos, Mariano; Rossit, Diego Gabriel; Solving a multi-objective manufacturing cell scheduling problem with the consideration of warehouses using a simulated annealing based procedure; Growing Science; International Journal of Industrial Engineering Computations; 10; 1; 1-2019; 1-16 1923-2926 1923-2934 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/112474 |
identifier_str_mv |
Toncovich, Adrián Andrés; Rossit, Daniel Alejandro; Frutos, Mariano; Rossit, Diego Gabriel; Solving a multi-objective manufacturing cell scheduling problem with the consideration of warehouses using a simulated annealing based procedure; Growing Science; International Journal of Industrial Engineering Computations; 10; 1; 1-2019; 1-16 1923-2926 1923-2934 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://growingscience.com/beta/ijiec/2830-solving-a-multi-objective-manufacturing-cell-scheduling-problem-with-the-consideration-of-warehouses-using-a-simulated-annealing-based-procedure.html info:eu-repo/semantics/altIdentifier/doi/10.5267/j.ijiec.2018.6.001 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Growing Science |
publisher.none.fl_str_mv |
Growing Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613472733626368 |
score |
13.070432 |