Evolutionary multi-objective scheduling procedures in non-standardized production processes
- Autores
- Frutos, Mariano; Tohmé, Fernando Abel
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Scheduling problems can be seen as multi-objective optimization problems (MOPs), involving the simultaneous satisfaction of several goals related to the optimal design, coordination and management of tasks. The complexity of the goal functions and of the combinatorial methods used to find analytical solutions to them is quite high. The search of solutions (Pareto-optima) is better served by the use of genetic algorithms (GAs). In this work we analyze the performance of NSGAII (Non-dominated Sorting Genetic Algorithm II), SPEAII (Strength Pareto Evolutionary algorithm II) and their predecessors, NSGA and SPEA, when devoted to scheduling tasks in non-standardized production activities.
En los problemas de programación de la producción que involucran diseñar, coordinar, administrar y controlar todas las operaciones presentes en el proceso productivo, aparecen numerosos problemas de optimización multi-objetivo (MOPs). Los MOPs constan de varias funciones que suelen ser complejas y evaluarlas puede ser muy costoso. La optimización multi-objetivo es la disciplina que trata de encontrar las soluciones, denominadas Pareto óptimas, a este tipo de problemas. La compleja resolución de los MOPs es debida a las dimensiones del problema, al carácter combinatorio de los algoritmos y a la naturaleza de los objetivos los cuales están vinculados a la eficiencia del sistema. En las últimas décadas muchos MOPs vinculados a la producción han sido tratados con éxito con técnicas de resolución basadas en algoritmos genéticos (GAs). En este trabajo se evalúa a NSGAII (Non-dominated Sorting Genetic Algorithm II), SPEAII (Strength Pareto Evolutionary algorithm II) y a sus antecesores, NSGA y SPEA, en el proceso de planificación de la producción no estandarizada.
Fil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina - Materia
-
JOB-SHOP SCHEDULING
MULTI-OBJECTIVE OPTIMIZATION
PARETO FRONTIER
MEMETIC ALGORITHM
LOCAL SEARCH - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/66230
Ver los metadatos del registro completo
id |
CONICETDig_d072ebd6a5d8035ada39171353b8aa81 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/66230 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Evolutionary multi-objective scheduling procedures in non-standardized production processesProcedimientos de programación evolutiva multiobjetivo en procesos productivos no estandarizadosFrutos, MarianoTohmé, Fernando AbelJOB-SHOP SCHEDULINGMULTI-OBJECTIVE OPTIMIZATIONPARETO FRONTIERMEMETIC ALGORITHMLOCAL SEARCHhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Scheduling problems can be seen as multi-objective optimization problems (MOPs), involving the simultaneous satisfaction of several goals related to the optimal design, coordination and management of tasks. The complexity of the goal functions and of the combinatorial methods used to find analytical solutions to them is quite high. The search of solutions (Pareto-optima) is better served by the use of genetic algorithms (GAs). In this work we analyze the performance of NSGAII (Non-dominated Sorting Genetic Algorithm II), SPEAII (Strength Pareto Evolutionary algorithm II) and their predecessors, NSGA and SPEA, when devoted to scheduling tasks in non-standardized production activities.En los problemas de programación de la producción que involucran diseñar, coordinar, administrar y controlar todas las operaciones presentes en el proceso productivo, aparecen numerosos problemas de optimización multi-objetivo (MOPs). Los MOPs constan de varias funciones que suelen ser complejas y evaluarlas puede ser muy costoso. La optimización multi-objetivo es la disciplina que trata de encontrar las soluciones, denominadas Pareto óptimas, a este tipo de problemas. La compleja resolución de los MOPs es debida a las dimensiones del problema, al carácter combinatorio de los algoritmos y a la naturaleza de los objetivos los cuales están vinculados a la eficiencia del sistema. En las últimas décadas muchos MOPs vinculados a la producción han sido tratados con éxito con técnicas de resolución basadas en algoritmos genéticos (GAs). En este trabajo se evalúa a NSGAII (Non-dominated Sorting Genetic Algorithm II), SPEAII (Strength Pareto Evolutionary algorithm II) y a sus antecesores, NSGA y SPEA, en el proceso de planificación de la producción no estandarizada.Fil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; ArgentinaFil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaUniversidad Nacional de Colombia. Facultad de Minas. Centro de Publicaciones2012-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/66230Frutos, Mariano; Tohmé, Fernando Abel; Evolutionary multi-objective scheduling procedures in non-standardized production processes; Universidad Nacional de Colombia. Facultad de Minas. Centro de Publicaciones; Dyna; 79; 172; 4-2012; 101-1070012-7353CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://ref.scielo.org/9dzc36info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:20:41Zoai:ri.conicet.gov.ar:11336/66230instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:20:41.503CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Evolutionary multi-objective scheduling procedures in non-standardized production processes Procedimientos de programación evolutiva multiobjetivo en procesos productivos no estandarizados |
title |
Evolutionary multi-objective scheduling procedures in non-standardized production processes |
spellingShingle |
Evolutionary multi-objective scheduling procedures in non-standardized production processes Frutos, Mariano JOB-SHOP SCHEDULING MULTI-OBJECTIVE OPTIMIZATION PARETO FRONTIER MEMETIC ALGORITHM LOCAL SEARCH |
title_short |
Evolutionary multi-objective scheduling procedures in non-standardized production processes |
title_full |
Evolutionary multi-objective scheduling procedures in non-standardized production processes |
title_fullStr |
Evolutionary multi-objective scheduling procedures in non-standardized production processes |
title_full_unstemmed |
Evolutionary multi-objective scheduling procedures in non-standardized production processes |
title_sort |
Evolutionary multi-objective scheduling procedures in non-standardized production processes |
dc.creator.none.fl_str_mv |
Frutos, Mariano Tohmé, Fernando Abel |
author |
Frutos, Mariano |
author_facet |
Frutos, Mariano Tohmé, Fernando Abel |
author_role |
author |
author2 |
Tohmé, Fernando Abel |
author2_role |
author |
dc.subject.none.fl_str_mv |
JOB-SHOP SCHEDULING MULTI-OBJECTIVE OPTIMIZATION PARETO FRONTIER MEMETIC ALGORITHM LOCAL SEARCH |
topic |
JOB-SHOP SCHEDULING MULTI-OBJECTIVE OPTIMIZATION PARETO FRONTIER MEMETIC ALGORITHM LOCAL SEARCH |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Scheduling problems can be seen as multi-objective optimization problems (MOPs), involving the simultaneous satisfaction of several goals related to the optimal design, coordination and management of tasks. The complexity of the goal functions and of the combinatorial methods used to find analytical solutions to them is quite high. The search of solutions (Pareto-optima) is better served by the use of genetic algorithms (GAs). In this work we analyze the performance of NSGAII (Non-dominated Sorting Genetic Algorithm II), SPEAII (Strength Pareto Evolutionary algorithm II) and their predecessors, NSGA and SPEA, when devoted to scheduling tasks in non-standardized production activities. En los problemas de programación de la producción que involucran diseñar, coordinar, administrar y controlar todas las operaciones presentes en el proceso productivo, aparecen numerosos problemas de optimización multi-objetivo (MOPs). Los MOPs constan de varias funciones que suelen ser complejas y evaluarlas puede ser muy costoso. La optimización multi-objetivo es la disciplina que trata de encontrar las soluciones, denominadas Pareto óptimas, a este tipo de problemas. La compleja resolución de los MOPs es debida a las dimensiones del problema, al carácter combinatorio de los algoritmos y a la naturaleza de los objetivos los cuales están vinculados a la eficiencia del sistema. En las últimas décadas muchos MOPs vinculados a la producción han sido tratados con éxito con técnicas de resolución basadas en algoritmos genéticos (GAs). En este trabajo se evalúa a NSGAII (Non-dominated Sorting Genetic Algorithm II), SPEAII (Strength Pareto Evolutionary algorithm II) y a sus antecesores, NSGA y SPEA, en el proceso de planificación de la producción no estandarizada. Fil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina |
description |
Scheduling problems can be seen as multi-objective optimization problems (MOPs), involving the simultaneous satisfaction of several goals related to the optimal design, coordination and management of tasks. The complexity of the goal functions and of the combinatorial methods used to find analytical solutions to them is quite high. The search of solutions (Pareto-optima) is better served by the use of genetic algorithms (GAs). In this work we analyze the performance of NSGAII (Non-dominated Sorting Genetic Algorithm II), SPEAII (Strength Pareto Evolutionary algorithm II) and their predecessors, NSGA and SPEA, when devoted to scheduling tasks in non-standardized production activities. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/66230 Frutos, Mariano; Tohmé, Fernando Abel; Evolutionary multi-objective scheduling procedures in non-standardized production processes; Universidad Nacional de Colombia. Facultad de Minas. Centro de Publicaciones; Dyna; 79; 172; 4-2012; 101-107 0012-7353 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/66230 |
identifier_str_mv |
Frutos, Mariano; Tohmé, Fernando Abel; Evolutionary multi-objective scheduling procedures in non-standardized production processes; Universidad Nacional de Colombia. Facultad de Minas. Centro de Publicaciones; Dyna; 79; 172; 4-2012; 101-107 0012-7353 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://ref.scielo.org/9dzc36 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional de Colombia. Facultad de Minas. Centro de Publicaciones |
publisher.none.fl_str_mv |
Universidad Nacional de Colombia. Facultad de Minas. Centro de Publicaciones |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614189175275520 |
score |
13.070432 |