Simulated-Annealing Optimization for Hydrocarbon Pipeline Networks
- Autores
- Rodriguez, D. A; Brignole, N. B; Oteiza, Paola P.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión enviada
- Descripción
- In this work the determination of optimally located pipeline networks has been proposed by means of the implementation of a metaheuristic algorithm called Simulated Annealing with GAMS (SAG) in order to find the best pipeline layout together with a subset of locations to install concentrating nodes. The strategy essentially consists of a hybridization of Simulated Annealing, combined with the well-known GAMS package. In particular, the sample cases consisted of finding the most convenient routes so as to transport natural gasoline from Santa Cruz (Argentina) gas fields to the processing plants. The SAG algorithm behaved satisfactorily because it proved to be efficient and flexible.
- Materia
-
Ciencias Químicas
Simulated Annealing
Pipeline Networks
Gams
Hydrocarbon - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/4287
Ver los metadatos del registro completo
id |
CICBA_2196efb6f2a189fcee1924448767a0f6 |
---|---|
oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/4287 |
network_acronym_str |
CICBA |
repository_id_str |
9441 |
network_name_str |
CIC Digital (CICBA) |
spelling |
Simulated-Annealing Optimization for Hydrocarbon Pipeline NetworksRodriguez, D. ABrignole, N. BOteiza, Paola P.Ciencias QuímicasSimulated AnnealingPipeline NetworksGamsHydrocarbonIn this work the determination of optimally located pipeline networks has been proposed by means of the implementation of a metaheuristic algorithm called Simulated Annealing with GAMS (SAG) in order to find the best pipeline layout together with a subset of locations to install concentrating nodes. The strategy essentially consists of a hybridization of Simulated Annealing, combined with the well-known GAMS package. In particular, the sample cases consisted of finding the most convenient routes so as to transport natural gasoline from Santa Cruz (Argentina) gas fields to the processing plants. The SAG algorithm behaved satisfactorily because it proved to be efficient and flexible.2013-05-24info:eu-repo/semantics/articleinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/4287enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-04T09:43:15Zoai:digital.cic.gba.gob.ar:11746/4287Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-04 09:43:15.514CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
dc.title.none.fl_str_mv |
Simulated-Annealing Optimization for Hydrocarbon Pipeline Networks |
title |
Simulated-Annealing Optimization for Hydrocarbon Pipeline Networks |
spellingShingle |
Simulated-Annealing Optimization for Hydrocarbon Pipeline Networks Rodriguez, D. A Ciencias Químicas Simulated Annealing Pipeline Networks Gams Hydrocarbon |
title_short |
Simulated-Annealing Optimization for Hydrocarbon Pipeline Networks |
title_full |
Simulated-Annealing Optimization for Hydrocarbon Pipeline Networks |
title_fullStr |
Simulated-Annealing Optimization for Hydrocarbon Pipeline Networks |
title_full_unstemmed |
Simulated-Annealing Optimization for Hydrocarbon Pipeline Networks |
title_sort |
Simulated-Annealing Optimization for Hydrocarbon Pipeline Networks |
dc.creator.none.fl_str_mv |
Rodriguez, D. A Brignole, N. B Oteiza, Paola P. |
author |
Rodriguez, D. A |
author_facet |
Rodriguez, D. A Brignole, N. B Oteiza, Paola P. |
author_role |
author |
author2 |
Brignole, N. B Oteiza, Paola P. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Químicas Simulated Annealing Pipeline Networks Gams Hydrocarbon |
topic |
Ciencias Químicas Simulated Annealing Pipeline Networks Gams Hydrocarbon |
dc.description.none.fl_txt_mv |
In this work the determination of optimally located pipeline networks has been proposed by means of the implementation of a metaheuristic algorithm called Simulated Annealing with GAMS (SAG) in order to find the best pipeline layout together with a subset of locations to install concentrating nodes. The strategy essentially consists of a hybridization of Simulated Annealing, combined with the well-known GAMS package. In particular, the sample cases consisted of finding the most convenient routes so as to transport natural gasoline from Santa Cruz (Argentina) gas fields to the processing plants. The SAG algorithm behaved satisfactorily because it proved to be efficient and flexible. |
description |
In this work the determination of optimally located pipeline networks has been proposed by means of the implementation of a metaheuristic algorithm called Simulated Annealing with GAMS (SAG) in order to find the best pipeline layout together with a subset of locations to install concentrating nodes. The strategy essentially consists of a hybridization of Simulated Annealing, combined with the well-known GAMS package. In particular, the sample cases consisted of finding the most convenient routes so as to transport natural gasoline from Santa Cruz (Argentina) gas fields to the processing plants. The SAG algorithm behaved satisfactorily because it proved to be efficient and flexible. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-05-24 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/submittedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
submittedVersion |
dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/4287 |
url |
https://digital.cic.gba.gob.ar/handle/11746/4287 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
reponame_str |
CIC Digital (CICBA) |
collection |
CIC Digital (CICBA) |
instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
instacron_str |
CICBA |
institution |
CICBA |
repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
_version_ |
1842340409928318976 |
score |
12.623145 |