Periodic solutions of systems with singularities of repulsive type

Autores
Amster, Pablo Gustavo; Maurette, Manuel
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Motivated by the classical Coulomb central motion model, we study the existence of T-periodic solutions for the nonlinear second order system of singular ordinary differential equations u′′ + g(u) = p(t). Using topological degree methods, we prove that when the nonlinearity g : ℝN\{0} →ℝN is continuous, repulsive at the origin and bounded at infinity, if an appropriate Nirenberg type condition holds then either the problem has a classical solution, or else there exists a family of solutions of perturbed problems that converge uniformly and weakly in H1 to some limit function u. Furthermore, under appropriate conditions we prove that u is a classical solution.
Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Maurette, Manuel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria; Argentina
Materia
Repulsive Singularities
Periodic Solutions
Topological Degree
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/15091

id CONICETDig_eb3885344a6ab4251ec05b4c55b54a65
oai_identifier_str oai:ri.conicet.gov.ar:11336/15091
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Periodic solutions of systems with singularities of repulsive typeAmster, Pablo GustavoMaurette, ManuelRepulsive SingularitiesPeriodic SolutionsTopological Degreehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Motivated by the classical Coulomb central motion model, we study the existence of T-periodic solutions for the nonlinear second order system of singular ordinary differential equations u′′ + g(u) = p(t). Using topological degree methods, we prove that when the nonlinearity g : ℝN\{0} →ℝN is continuous, repulsive at the origin and bounded at infinity, if an appropriate Nirenberg type condition holds then either the problem has a classical solution, or else there exists a family of solutions of perturbed problems that converge uniformly and weakly in H1 to some limit function u. Furthermore, under appropriate conditions we prove that u is a classical solution.Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Maurette, Manuel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria; ArgentinaDe Gruyter2011-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15091Amster, Pablo Gustavo; Maurette, Manuel; Periodic solutions of systems with singularities of repulsive type; De Gruyter; Advanced Nonlinear Studies; 11; 1; 2-2011; 201-2201536-1365enginfo:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/ans.2011.11.issue-1/ans-2011-0110/ans-2011-0110.xml?format=INTinfo:eu-repo/semantics/altIdentifier/doi/10.1515/ans-2011-0110info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:21Zoai:ri.conicet.gov.ar:11336/15091instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:21.516CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Periodic solutions of systems with singularities of repulsive type
title Periodic solutions of systems with singularities of repulsive type
spellingShingle Periodic solutions of systems with singularities of repulsive type
Amster, Pablo Gustavo
Repulsive Singularities
Periodic Solutions
Topological Degree
title_short Periodic solutions of systems with singularities of repulsive type
title_full Periodic solutions of systems with singularities of repulsive type
title_fullStr Periodic solutions of systems with singularities of repulsive type
title_full_unstemmed Periodic solutions of systems with singularities of repulsive type
title_sort Periodic solutions of systems with singularities of repulsive type
dc.creator.none.fl_str_mv Amster, Pablo Gustavo
Maurette, Manuel
author Amster, Pablo Gustavo
author_facet Amster, Pablo Gustavo
Maurette, Manuel
author_role author
author2 Maurette, Manuel
author2_role author
dc.subject.none.fl_str_mv Repulsive Singularities
Periodic Solutions
Topological Degree
topic Repulsive Singularities
Periodic Solutions
Topological Degree
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Motivated by the classical Coulomb central motion model, we study the existence of T-periodic solutions for the nonlinear second order system of singular ordinary differential equations u′′ + g(u) = p(t). Using topological degree methods, we prove that when the nonlinearity g : ℝN\{0} →ℝN is continuous, repulsive at the origin and bounded at infinity, if an appropriate Nirenberg type condition holds then either the problem has a classical solution, or else there exists a family of solutions of perturbed problems that converge uniformly and weakly in H1 to some limit function u. Furthermore, under appropriate conditions we prove that u is a classical solution.
Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Maurette, Manuel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria; Argentina
description Motivated by the classical Coulomb central motion model, we study the existence of T-periodic solutions for the nonlinear second order system of singular ordinary differential equations u′′ + g(u) = p(t). Using topological degree methods, we prove that when the nonlinearity g : ℝN\{0} →ℝN is continuous, repulsive at the origin and bounded at infinity, if an appropriate Nirenberg type condition holds then either the problem has a classical solution, or else there exists a family of solutions of perturbed problems that converge uniformly and weakly in H1 to some limit function u. Furthermore, under appropriate conditions we prove that u is a classical solution.
publishDate 2011
dc.date.none.fl_str_mv 2011-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/15091
Amster, Pablo Gustavo; Maurette, Manuel; Periodic solutions of systems with singularities of repulsive type; De Gruyter; Advanced Nonlinear Studies; 11; 1; 2-2011; 201-220
1536-1365
url http://hdl.handle.net/11336/15091
identifier_str_mv Amster, Pablo Gustavo; Maurette, Manuel; Periodic solutions of systems with singularities of repulsive type; De Gruyter; Advanced Nonlinear Studies; 11; 1; 2-2011; 201-220
1536-1365
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/ans.2011.11.issue-1/ans-2011-0110/ans-2011-0110.xml?format=INT
info:eu-repo/semantics/altIdentifier/doi/10.1515/ans-2011-0110
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv De Gruyter
publisher.none.fl_str_mv De Gruyter
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269907602898944
score 13.13397