Periodic solutions of systems with singularities of repulsive type
- Autores
- Amster, Pablo Gustavo; Maurette, Manuel
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Motivated by the classical Coulomb central motion model, we study the existence of T-periodic solutions for the nonlinear second order system of singular ordinary differential equations u′′ + g(u) = p(t). Using topological degree methods, we prove that when the nonlinearity g : ℝN\{0} →ℝN is continuous, repulsive at the origin and bounded at infinity, if an appropriate Nirenberg type condition holds then either the problem has a classical solution, or else there exists a family of solutions of perturbed problems that converge uniformly and weakly in H1 to some limit function u. Furthermore, under appropriate conditions we prove that u is a classical solution.
Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Maurette, Manuel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria; Argentina - Materia
-
Repulsive Singularities
Periodic Solutions
Topological Degree - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15091
Ver los metadatos del registro completo
id |
CONICETDig_eb3885344a6ab4251ec05b4c55b54a65 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15091 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Periodic solutions of systems with singularities of repulsive typeAmster, Pablo GustavoMaurette, ManuelRepulsive SingularitiesPeriodic SolutionsTopological Degreehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Motivated by the classical Coulomb central motion model, we study the existence of T-periodic solutions for the nonlinear second order system of singular ordinary differential equations u′′ + g(u) = p(t). Using topological degree methods, we prove that when the nonlinearity g : ℝN\{0} →ℝN is continuous, repulsive at the origin and bounded at infinity, if an appropriate Nirenberg type condition holds then either the problem has a classical solution, or else there exists a family of solutions of perturbed problems that converge uniformly and weakly in H1 to some limit function u. Furthermore, under appropriate conditions we prove that u is a classical solution.Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Maurette, Manuel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria; ArgentinaDe Gruyter2011-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15091Amster, Pablo Gustavo; Maurette, Manuel; Periodic solutions of systems with singularities of repulsive type; De Gruyter; Advanced Nonlinear Studies; 11; 1; 2-2011; 201-2201536-1365enginfo:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/ans.2011.11.issue-1/ans-2011-0110/ans-2011-0110.xml?format=INTinfo:eu-repo/semantics/altIdentifier/doi/10.1515/ans-2011-0110info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:21Zoai:ri.conicet.gov.ar:11336/15091instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:21.516CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Periodic solutions of systems with singularities of repulsive type |
title |
Periodic solutions of systems with singularities of repulsive type |
spellingShingle |
Periodic solutions of systems with singularities of repulsive type Amster, Pablo Gustavo Repulsive Singularities Periodic Solutions Topological Degree |
title_short |
Periodic solutions of systems with singularities of repulsive type |
title_full |
Periodic solutions of systems with singularities of repulsive type |
title_fullStr |
Periodic solutions of systems with singularities of repulsive type |
title_full_unstemmed |
Periodic solutions of systems with singularities of repulsive type |
title_sort |
Periodic solutions of systems with singularities of repulsive type |
dc.creator.none.fl_str_mv |
Amster, Pablo Gustavo Maurette, Manuel |
author |
Amster, Pablo Gustavo |
author_facet |
Amster, Pablo Gustavo Maurette, Manuel |
author_role |
author |
author2 |
Maurette, Manuel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Repulsive Singularities Periodic Solutions Topological Degree |
topic |
Repulsive Singularities Periodic Solutions Topological Degree |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Motivated by the classical Coulomb central motion model, we study the existence of T-periodic solutions for the nonlinear second order system of singular ordinary differential equations u′′ + g(u) = p(t). Using topological degree methods, we prove that when the nonlinearity g : ℝN\{0} →ℝN is continuous, repulsive at the origin and bounded at infinity, if an appropriate Nirenberg type condition holds then either the problem has a classical solution, or else there exists a family of solutions of perturbed problems that converge uniformly and weakly in H1 to some limit function u. Furthermore, under appropriate conditions we prove that u is a classical solution. Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Maurette, Manuel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria; Argentina |
description |
Motivated by the classical Coulomb central motion model, we study the existence of T-periodic solutions for the nonlinear second order system of singular ordinary differential equations u′′ + g(u) = p(t). Using topological degree methods, we prove that when the nonlinearity g : ℝN\{0} →ℝN is continuous, repulsive at the origin and bounded at infinity, if an appropriate Nirenberg type condition holds then either the problem has a classical solution, or else there exists a family of solutions of perturbed problems that converge uniformly and weakly in H1 to some limit function u. Furthermore, under appropriate conditions we prove that u is a classical solution. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15091 Amster, Pablo Gustavo; Maurette, Manuel; Periodic solutions of systems with singularities of repulsive type; De Gruyter; Advanced Nonlinear Studies; 11; 1; 2-2011; 201-220 1536-1365 |
url |
http://hdl.handle.net/11336/15091 |
identifier_str_mv |
Amster, Pablo Gustavo; Maurette, Manuel; Periodic solutions of systems with singularities of repulsive type; De Gruyter; Advanced Nonlinear Studies; 11; 1; 2-2011; 201-220 1536-1365 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/ans.2011.11.issue-1/ans-2011-0110/ans-2011-0110.xml?format=INT info:eu-repo/semantics/altIdentifier/doi/10.1515/ans-2011-0110 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269907602898944 |
score |
13.13397 |