On existence of periodic solutions for Kepler type problems
- Autores
- Amster, Pablo Gustavo; Haddad, Julián Eduardo
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove existence and multiplicity of periodic motions for the forced $2$-body problem under conditions of topological character. In different cases, the lower bounds obtained for the number of solutions are related to the winding number of a curve in the plane and the homology of a space in $\mathbb R^3$.
Fil: Amster, Pablo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Haddad, Julián Eduardo. Universidade Federal do Minas Gerais; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Kepler Problems
Periodic Solutions
Degree Theory - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19453
Ver los metadatos del registro completo
id |
CONICETDig_7398549c3078f80d350d13d97e4cf324 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19453 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On existence of periodic solutions for Kepler type problemsAmster, Pablo GustavoHaddad, Julián EduardoKepler ProblemsPeriodic SolutionsDegree Theoryhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove existence and multiplicity of periodic motions for the forced $2$-body problem under conditions of topological character. In different cases, the lower bounds obtained for the number of solutions are related to the winding number of a curve in the plane and the homology of a space in $\mathbb R^3$.Fil: Amster, Pablo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Haddad, Julián Eduardo. Universidade Federal do Minas Gerais; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaJuliusz Schauder Ctr Nonlinear Studies2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19453Amster, Pablo Gustavo; Haddad, Julián Eduardo; On existence of periodic solutions for Kepler type problems; Juliusz Schauder Ctr Nonlinear Studies; Topological Methods In Nonlinear Analysis; 48; 2; 12-2016; 465-4761230-3429CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.12775/TMNA.2016.053info:eu-repo/semantics/altIdentifier/url/http://apcz.umk.pl/czasopisma/index.php/TMNA/article/view/TMNA.2016.053info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1303.5600info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:47Zoai:ri.conicet.gov.ar:11336/19453instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:47.7CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On existence of periodic solutions for Kepler type problems |
title |
On existence of periodic solutions for Kepler type problems |
spellingShingle |
On existence of periodic solutions for Kepler type problems Amster, Pablo Gustavo Kepler Problems Periodic Solutions Degree Theory |
title_short |
On existence of periodic solutions for Kepler type problems |
title_full |
On existence of periodic solutions for Kepler type problems |
title_fullStr |
On existence of periodic solutions for Kepler type problems |
title_full_unstemmed |
On existence of periodic solutions for Kepler type problems |
title_sort |
On existence of periodic solutions for Kepler type problems |
dc.creator.none.fl_str_mv |
Amster, Pablo Gustavo Haddad, Julián Eduardo |
author |
Amster, Pablo Gustavo |
author_facet |
Amster, Pablo Gustavo Haddad, Julián Eduardo |
author_role |
author |
author2 |
Haddad, Julián Eduardo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Kepler Problems Periodic Solutions Degree Theory |
topic |
Kepler Problems Periodic Solutions Degree Theory |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We prove existence and multiplicity of periodic motions for the forced $2$-body problem under conditions of topological character. In different cases, the lower bounds obtained for the number of solutions are related to the winding number of a curve in the plane and the homology of a space in $\mathbb R^3$. Fil: Amster, Pablo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Haddad, Julián Eduardo. Universidade Federal do Minas Gerais; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We prove existence and multiplicity of periodic motions for the forced $2$-body problem under conditions of topological character. In different cases, the lower bounds obtained for the number of solutions are related to the winding number of a curve in the plane and the homology of a space in $\mathbb R^3$. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19453 Amster, Pablo Gustavo; Haddad, Julián Eduardo; On existence of periodic solutions for Kepler type problems; Juliusz Schauder Ctr Nonlinear Studies; Topological Methods In Nonlinear Analysis; 48; 2; 12-2016; 465-476 1230-3429 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19453 |
identifier_str_mv |
Amster, Pablo Gustavo; Haddad, Julián Eduardo; On existence of periodic solutions for Kepler type problems; Juliusz Schauder Ctr Nonlinear Studies; Topological Methods In Nonlinear Analysis; 48; 2; 12-2016; 465-476 1230-3429 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.12775/TMNA.2016.053 info:eu-repo/semantics/altIdentifier/url/http://apcz.umk.pl/czasopisma/index.php/TMNA/article/view/TMNA.2016.053 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1303.5600 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Juliusz Schauder Ctr Nonlinear Studies |
publisher.none.fl_str_mv |
Juliusz Schauder Ctr Nonlinear Studies |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613227110989824 |
score |
13.070432 |