On existence of periodic solutions for Kepler type problems

Autores
Amster, Pablo Gustavo; Haddad, Julián Eduardo
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We prove existence and multiplicity of periodic motions for the forced $2$-body problem under conditions of topological character. In different cases, the lower bounds obtained for the number of solutions are related to the winding number of a curve in the plane and the homology of a space in $\mathbb R^3$.
Fil: Amster, Pablo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Haddad, Julián Eduardo. Universidade Federal do Minas Gerais; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Kepler Problems
Periodic Solutions
Degree Theory
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19453

id CONICETDig_7398549c3078f80d350d13d97e4cf324
oai_identifier_str oai:ri.conicet.gov.ar:11336/19453
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On existence of periodic solutions for Kepler type problemsAmster, Pablo GustavoHaddad, Julián EduardoKepler ProblemsPeriodic SolutionsDegree Theoryhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove existence and multiplicity of periodic motions for the forced $2$-body problem under conditions of topological character. In different cases, the lower bounds obtained for the number of solutions are related to the winding number of a curve in the plane and the homology of a space in $\mathbb R^3$.Fil: Amster, Pablo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Haddad, Julián Eduardo. Universidade Federal do Minas Gerais; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaJuliusz Schauder Ctr Nonlinear Studies2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19453Amster, Pablo Gustavo; Haddad, Julián Eduardo; On existence of periodic solutions for Kepler type problems; Juliusz Schauder Ctr Nonlinear Studies; Topological Methods In Nonlinear Analysis; 48; 2; 12-2016; 465-4761230-3429CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.12775/TMNA.2016.053info:eu-repo/semantics/altIdentifier/url/http://apcz.umk.pl/czasopisma/index.php/TMNA/article/view/TMNA.2016.053info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1303.5600info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:47Zoai:ri.conicet.gov.ar:11336/19453instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:47.7CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On existence of periodic solutions for Kepler type problems
title On existence of periodic solutions for Kepler type problems
spellingShingle On existence of periodic solutions for Kepler type problems
Amster, Pablo Gustavo
Kepler Problems
Periodic Solutions
Degree Theory
title_short On existence of periodic solutions for Kepler type problems
title_full On existence of periodic solutions for Kepler type problems
title_fullStr On existence of periodic solutions for Kepler type problems
title_full_unstemmed On existence of periodic solutions for Kepler type problems
title_sort On existence of periodic solutions for Kepler type problems
dc.creator.none.fl_str_mv Amster, Pablo Gustavo
Haddad, Julián Eduardo
author Amster, Pablo Gustavo
author_facet Amster, Pablo Gustavo
Haddad, Julián Eduardo
author_role author
author2 Haddad, Julián Eduardo
author2_role author
dc.subject.none.fl_str_mv Kepler Problems
Periodic Solutions
Degree Theory
topic Kepler Problems
Periodic Solutions
Degree Theory
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We prove existence and multiplicity of periodic motions for the forced $2$-body problem under conditions of topological character. In different cases, the lower bounds obtained for the number of solutions are related to the winding number of a curve in the plane and the homology of a space in $\mathbb R^3$.
Fil: Amster, Pablo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Haddad, Julián Eduardo. Universidade Federal do Minas Gerais; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We prove existence and multiplicity of periodic motions for the forced $2$-body problem under conditions of topological character. In different cases, the lower bounds obtained for the number of solutions are related to the winding number of a curve in the plane and the homology of a space in $\mathbb R^3$.
publishDate 2016
dc.date.none.fl_str_mv 2016-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19453
Amster, Pablo Gustavo; Haddad, Julián Eduardo; On existence of periodic solutions for Kepler type problems; Juliusz Schauder Ctr Nonlinear Studies; Topological Methods In Nonlinear Analysis; 48; 2; 12-2016; 465-476
1230-3429
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19453
identifier_str_mv Amster, Pablo Gustavo; Haddad, Julián Eduardo; On existence of periodic solutions for Kepler type problems; Juliusz Schauder Ctr Nonlinear Studies; Topological Methods In Nonlinear Analysis; 48; 2; 12-2016; 465-476
1230-3429
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.12775/TMNA.2016.053
info:eu-repo/semantics/altIdentifier/url/http://apcz.umk.pl/czasopisma/index.php/TMNA/article/view/TMNA.2016.053
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1303.5600
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Juliusz Schauder Ctr Nonlinear Studies
publisher.none.fl_str_mv Juliusz Schauder Ctr Nonlinear Studies
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613227110989824
score 13.070432