Periodic solutions for indefinite singular equations with singularities in the spatial variable and non-monotone nonlinearity

Autores
Amster, Pablo Gustavo; Zamora, Manuel
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
TWe prove the existence of T−periodic solutions for the second order non-linear equation u0 1 − u02 0 = h(t)g(u), where the non-linear term g has two singularities and the weight function h changes sign. We find a relation between the degeneracy of the zeroes of the weight function and the order of one of the singularities of the non-linear term. The proof is based on the classical Leray-Schauder continuation theorem. Some applications to important mathematical models are presented.
Fil: Amster, Pablo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Zamora, Manuel. Universidad de Oviedo; España
Materia
AND PHRASES
DEGREE THEORY
INDEFINITE SINGULARITY
LERAY-SCHAUDER CONTINUATION THEOREM
PERIODIC SOLUTIONS
SINGULAR DIFFERENTIAL EQUATIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/89055

id CONICETDig_3bcf6eeab4921859f720302491516a11
oai_identifier_str oai:ri.conicet.gov.ar:11336/89055
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Periodic solutions for indefinite singular equations with singularities in the spatial variable and non-monotone nonlinearityAmster, Pablo GustavoZamora, ManuelAND PHRASESDEGREE THEORYINDEFINITE SINGULARITYLERAY-SCHAUDER CONTINUATION THEOREMPERIODIC SOLUTIONSSINGULAR DIFFERENTIAL EQUATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1TWe prove the existence of T−periodic solutions for the second order non-linear equation u0 1 − u02 0 = h(t)g(u), where the non-linear term g has two singularities and the weight function h changes sign. We find a relation between the degeneracy of the zeroes of the weight function and the order of one of the singularities of the non-linear term. The proof is based on the classical Leray-Schauder continuation theorem. Some applications to important mathematical models are presented.Fil: Amster, Pablo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Zamora, Manuel. Universidad de Oviedo; EspañaAmerican Institute of Mathematical Sciences2018-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89055Amster, Pablo Gustavo; Zamora, Manuel; Periodic solutions for indefinite singular equations with singularities in the spatial variable and non-monotone nonlinearity; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 38; 10; 10-2018; 4819-48351078-0947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org/article/doi/10.3934/dcds.2018211info:eu-repo/semantics/altIdentifier/doi/10.3934/dcds.2018211info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:10Zoai:ri.conicet.gov.ar:11336/89055instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:10.337CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Periodic solutions for indefinite singular equations with singularities in the spatial variable and non-monotone nonlinearity
title Periodic solutions for indefinite singular equations with singularities in the spatial variable and non-monotone nonlinearity
spellingShingle Periodic solutions for indefinite singular equations with singularities in the spatial variable and non-monotone nonlinearity
Amster, Pablo Gustavo
AND PHRASES
DEGREE THEORY
INDEFINITE SINGULARITY
LERAY-SCHAUDER CONTINUATION THEOREM
PERIODIC SOLUTIONS
SINGULAR DIFFERENTIAL EQUATIONS
title_short Periodic solutions for indefinite singular equations with singularities in the spatial variable and non-monotone nonlinearity
title_full Periodic solutions for indefinite singular equations with singularities in the spatial variable and non-monotone nonlinearity
title_fullStr Periodic solutions for indefinite singular equations with singularities in the spatial variable and non-monotone nonlinearity
title_full_unstemmed Periodic solutions for indefinite singular equations with singularities in the spatial variable and non-monotone nonlinearity
title_sort Periodic solutions for indefinite singular equations with singularities in the spatial variable and non-monotone nonlinearity
dc.creator.none.fl_str_mv Amster, Pablo Gustavo
Zamora, Manuel
author Amster, Pablo Gustavo
author_facet Amster, Pablo Gustavo
Zamora, Manuel
author_role author
author2 Zamora, Manuel
author2_role author
dc.subject.none.fl_str_mv AND PHRASES
DEGREE THEORY
INDEFINITE SINGULARITY
LERAY-SCHAUDER CONTINUATION THEOREM
PERIODIC SOLUTIONS
SINGULAR DIFFERENTIAL EQUATIONS
topic AND PHRASES
DEGREE THEORY
INDEFINITE SINGULARITY
LERAY-SCHAUDER CONTINUATION THEOREM
PERIODIC SOLUTIONS
SINGULAR DIFFERENTIAL EQUATIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv TWe prove the existence of T−periodic solutions for the second order non-linear equation u0 1 − u02 0 = h(t)g(u), where the non-linear term g has two singularities and the weight function h changes sign. We find a relation between the degeneracy of the zeroes of the weight function and the order of one of the singularities of the non-linear term. The proof is based on the classical Leray-Schauder continuation theorem. Some applications to important mathematical models are presented.
Fil: Amster, Pablo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Zamora, Manuel. Universidad de Oviedo; España
description TWe prove the existence of T−periodic solutions for the second order non-linear equation u0 1 − u02 0 = h(t)g(u), where the non-linear term g has two singularities and the weight function h changes sign. We find a relation between the degeneracy of the zeroes of the weight function and the order of one of the singularities of the non-linear term. The proof is based on the classical Leray-Schauder continuation theorem. Some applications to important mathematical models are presented.
publishDate 2018
dc.date.none.fl_str_mv 2018-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/89055
Amster, Pablo Gustavo; Zamora, Manuel; Periodic solutions for indefinite singular equations with singularities in the spatial variable and non-monotone nonlinearity; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 38; 10; 10-2018; 4819-4835
1078-0947
CONICET Digital
CONICET
url http://hdl.handle.net/11336/89055
identifier_str_mv Amster, Pablo Gustavo; Zamora, Manuel; Periodic solutions for indefinite singular equations with singularities in the spatial variable and non-monotone nonlinearity; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 38; 10; 10-2018; 4819-4835
1078-0947
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org/article/doi/10.3934/dcds.2018211
info:eu-repo/semantics/altIdentifier/doi/10.3934/dcds.2018211
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Mathematical Sciences
publisher.none.fl_str_mv American Institute of Mathematical Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269944993021952
score 13.13397