MPC for tracking zone regions
- Autores
- Ferramosca, Antonio; Limón, Daniel; González, Alejandro Hernán; Odloak, Darci; Camacho, Eduardo
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper deals with the problem of tracking target sets using a model predictive control (MPC) law. Some MPC applications require a control strategy in which some system outputs are controlled within specified ranges or zones (zone control), while some other variables – possibly including input variables - are steered to fixed target or set-point. In real applications, this problem is often overcome by including and excluding an appropriate penalization for the output errors in the control cost function. In this way, throughout the continuous operation of the process, the control system keeps switching from one controller to another, and even if a stabilizing control law is developed for each of the control configurations, switching among stable controllers not necessarily produces a stable closed loop system. From a theoretical point of view, the control objective of this kind of problem can be seen as a target set (in the output space) instead of a target point, since inside the zones there are no preferences between one point or another. In this work, a stable MPC formulation for constrained linear systems, with several practical properties is developed for this scenario. The concept of distance from a point to a set is exploited to propose an additional cost term, which ensures both, recursive feasibility and local optimality. The performance of the proposed strategy is illustrated by simulation of an ill-conditioned distillation column.
Fil: Ferramosca, Antonio. Universidad de Sevilla. Departamento de Ingenieria de Sistemas y Automatica. Escuela Superior de Ingenieros Industriales; España. Universidad Tecnológica Nacional. Facultad Regional Reconquista; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Limón, Daniel. Universidad de Sevilla. Departamento de Ingenieria de Sistemas y Automatica. Escuela Superior de Ingenieros Industriales; España
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
Fil: Odloak, Darci. Universidade de Sao Paulo; Brasil
Fil: Camacho, Eduardo. Universidad de Sevilla. Departamento de Ingenieria de Sistemas y Automatica. Escuela Superior de Ingenieros Industriales; España - Materia
-
Model Predictive Control
Tracking
Optimality
Zone Control - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/13443
Ver los metadatos del registro completo
id |
CONICETDig_eaa775d447e4df70c9fd92f167986d9a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/13443 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
MPC for tracking zone regionsFerramosca, AntonioLimón, DanielGonzález, Alejandro HernánOdloak, DarciCamacho, EduardoModel Predictive ControlTrackingOptimalityZone Controlhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This paper deals with the problem of tracking target sets using a model predictive control (MPC) law. Some MPC applications require a control strategy in which some system outputs are controlled within specified ranges or zones (zone control), while some other variables – possibly including input variables - are steered to fixed target or set-point. In real applications, this problem is often overcome by including and excluding an appropriate penalization for the output errors in the control cost function. In this way, throughout the continuous operation of the process, the control system keeps switching from one controller to another, and even if a stabilizing control law is developed for each of the control configurations, switching among stable controllers not necessarily produces a stable closed loop system. From a theoretical point of view, the control objective of this kind of problem can be seen as a target set (in the output space) instead of a target point, since inside the zones there are no preferences between one point or another. In this work, a stable MPC formulation for constrained linear systems, with several practical properties is developed for this scenario. The concept of distance from a point to a set is exploited to propose an additional cost term, which ensures both, recursive feasibility and local optimality. The performance of the proposed strategy is illustrated by simulation of an ill-conditioned distillation column.Fil: Ferramosca, Antonio. Universidad de Sevilla. Departamento de Ingenieria de Sistemas y Automatica. Escuela Superior de Ingenieros Industriales; España. Universidad Tecnológica Nacional. Facultad Regional Reconquista; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Limón, Daniel. Universidad de Sevilla. Departamento de Ingenieria de Sistemas y Automatica. Escuela Superior de Ingenieros Industriales; EspañaFil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaFil: Odloak, Darci. Universidade de Sao Paulo; BrasilFil: Camacho, Eduardo. Universidad de Sevilla. Departamento de Ingenieria de Sistemas y Automatica. Escuela Superior de Ingenieros Industriales; EspañaElsevier2010-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13443Ferramosca, Antonio; Limón, Daniel; González, Alejandro Hernán; Odloak, Darci; Camacho, Eduardo; MPC for tracking zone regions; Elsevier; Journal Of Process Control; 20; 1-2010; 506-5160959-1524enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jprocont.2010.02.005info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0959152410000466info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:59:16Zoai:ri.conicet.gov.ar:11336/13443instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:59:16.822CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
MPC for tracking zone regions |
title |
MPC for tracking zone regions |
spellingShingle |
MPC for tracking zone regions Ferramosca, Antonio Model Predictive Control Tracking Optimality Zone Control |
title_short |
MPC for tracking zone regions |
title_full |
MPC for tracking zone regions |
title_fullStr |
MPC for tracking zone regions |
title_full_unstemmed |
MPC for tracking zone regions |
title_sort |
MPC for tracking zone regions |
dc.creator.none.fl_str_mv |
Ferramosca, Antonio Limón, Daniel González, Alejandro Hernán Odloak, Darci Camacho, Eduardo |
author |
Ferramosca, Antonio |
author_facet |
Ferramosca, Antonio Limón, Daniel González, Alejandro Hernán Odloak, Darci Camacho, Eduardo |
author_role |
author |
author2 |
Limón, Daniel González, Alejandro Hernán Odloak, Darci Camacho, Eduardo |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Model Predictive Control Tracking Optimality Zone Control |
topic |
Model Predictive Control Tracking Optimality Zone Control |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This paper deals with the problem of tracking target sets using a model predictive control (MPC) law. Some MPC applications require a control strategy in which some system outputs are controlled within specified ranges or zones (zone control), while some other variables – possibly including input variables - are steered to fixed target or set-point. In real applications, this problem is often overcome by including and excluding an appropriate penalization for the output errors in the control cost function. In this way, throughout the continuous operation of the process, the control system keeps switching from one controller to another, and even if a stabilizing control law is developed for each of the control configurations, switching among stable controllers not necessarily produces a stable closed loop system. From a theoretical point of view, the control objective of this kind of problem can be seen as a target set (in the output space) instead of a target point, since inside the zones there are no preferences between one point or another. In this work, a stable MPC formulation for constrained linear systems, with several practical properties is developed for this scenario. The concept of distance from a point to a set is exploited to propose an additional cost term, which ensures both, recursive feasibility and local optimality. The performance of the proposed strategy is illustrated by simulation of an ill-conditioned distillation column. Fil: Ferramosca, Antonio. Universidad de Sevilla. Departamento de Ingenieria de Sistemas y Automatica. Escuela Superior de Ingenieros Industriales; España. Universidad Tecnológica Nacional. Facultad Regional Reconquista; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Limón, Daniel. Universidad de Sevilla. Departamento de Ingenieria de Sistemas y Automatica. Escuela Superior de Ingenieros Industriales; España Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina Fil: Odloak, Darci. Universidade de Sao Paulo; Brasil Fil: Camacho, Eduardo. Universidad de Sevilla. Departamento de Ingenieria de Sistemas y Automatica. Escuela Superior de Ingenieros Industriales; España |
description |
This paper deals with the problem of tracking target sets using a model predictive control (MPC) law. Some MPC applications require a control strategy in which some system outputs are controlled within specified ranges or zones (zone control), while some other variables – possibly including input variables - are steered to fixed target or set-point. In real applications, this problem is often overcome by including and excluding an appropriate penalization for the output errors in the control cost function. In this way, throughout the continuous operation of the process, the control system keeps switching from one controller to another, and even if a stabilizing control law is developed for each of the control configurations, switching among stable controllers not necessarily produces a stable closed loop system. From a theoretical point of view, the control objective of this kind of problem can be seen as a target set (in the output space) instead of a target point, since inside the zones there are no preferences between one point or another. In this work, a stable MPC formulation for constrained linear systems, with several practical properties is developed for this scenario. The concept of distance from a point to a set is exploited to propose an additional cost term, which ensures both, recursive feasibility and local optimality. The performance of the proposed strategy is illustrated by simulation of an ill-conditioned distillation column. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/13443 Ferramosca, Antonio; Limón, Daniel; González, Alejandro Hernán; Odloak, Darci; Camacho, Eduardo; MPC for tracking zone regions; Elsevier; Journal Of Process Control; 20; 1-2010; 506-516 0959-1524 |
url |
http://hdl.handle.net/11336/13443 |
identifier_str_mv |
Ferramosca, Antonio; Limón, Daniel; González, Alejandro Hernán; Odloak, Darci; Camacho, Eduardo; MPC for tracking zone regions; Elsevier; Journal Of Process Control; 20; 1-2010; 506-516 0959-1524 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jprocont.2010.02.005 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0959152410000466 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613760104267776 |
score |
13.070432 |