Robust MPC for tracking zone regions based on nominal predictions
- Autores
- Ferramosca, Antonio; Limon, D.; González, Alejandro Hernán; Alvarado, I.; Camacho, E. F.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper deals with the problem of robust tracking of target sets using a model predictive control (MPC) law. Real industries applications often require a control strategy in which some system outputs are controlled within specified ranges or zones (zone control), while some others variables – possibly including input variables – are steered to fixed target or setpoint. From a theoretical point of view, the control objective of this kind of problem can be seen as a target set (in the output space) instead of a target point, since inside the zones there are no preferences between one point or another. This problem is particularly interesting in case of additive disturbances which might push the outputs out of the zones. In this work, a stable robust MPC formulation for constrained linear systems, based on nominal predictions is presented. The main features of this controller are the use of nominal predictions, restricted constraints and the concept of distance from a point to a set as offset cost function. The controller ensures both recursive feasibility and local optimality. The properties of the controller are shown in a simulation test, in which we consider a subsystem of an industrial FCC system.
Fil: Ferramosca, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Limon, D.. Universidad de Sevilla. Departamento de Ingeniería de Sistemas y Automática. Escuela Superior de Ingenieros Industriales; España
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Alvarado, I.. Universidad de Sevilla. Departamento de Ingeniería de Sistemas y Automática. Escuela Superior de Ingenieros Industriales; España
Fil: Camacho, E. F.. Universidad de Sevilla. Departamento de Ingeniería de Sistemas y Automática. Escuela Superior de Ingenieros Industriales; España - Materia
-
Model Predictive Control
Restricted Constraints
Zone Control
Target Set Tracking - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/24431
Ver los metadatos del registro completo
id |
CONICETDig_000dafbaf4a4ec8a78ea8f742bbcae5b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/24431 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Robust MPC for tracking zone regions based on nominal predictionsFerramosca, AntonioLimon, D.González, Alejandro HernánAlvarado, I.Camacho, E. F.Model Predictive ControlRestricted ConstraintsZone ControlTarget Set Trackinghttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This paper deals with the problem of robust tracking of target sets using a model predictive control (MPC) law. Real industries applications often require a control strategy in which some system outputs are controlled within specified ranges or zones (zone control), while some others variables – possibly including input variables – are steered to fixed target or setpoint. From a theoretical point of view, the control objective of this kind of problem can be seen as a target set (in the output space) instead of a target point, since inside the zones there are no preferences between one point or another. This problem is particularly interesting in case of additive disturbances which might push the outputs out of the zones. In this work, a stable robust MPC formulation for constrained linear systems, based on nominal predictions is presented. The main features of this controller are the use of nominal predictions, restricted constraints and the concept of distance from a point to a set as offset cost function. The controller ensures both recursive feasibility and local optimality. The properties of the controller are shown in a simulation test, in which we consider a subsystem of an industrial FCC system.Fil: Ferramosca, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Limon, D.. Universidad de Sevilla. Departamento de Ingeniería de Sistemas y Automática. Escuela Superior de Ingenieros Industriales; EspañaFil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Alvarado, I.. Universidad de Sevilla. Departamento de Ingeniería de Sistemas y Automática. Escuela Superior de Ingenieros Industriales; EspañaFil: Camacho, E. F.. Universidad de Sevilla. Departamento de Ingeniería de Sistemas y Automática. Escuela Superior de Ingenieros Industriales; EspañaElsevier2012-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/24431Ferramosca, Antonio; Limon, D.; González, Alejandro Hernán; Alvarado, I.; Camacho, E. F.; Robust MPC for tracking zone regions based on nominal predictions; Elsevier; Journal Of Process Control; 22; 10; 12-2012; 1966-19740959-1524CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jprocont.2012.08.013info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0959152412002077info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:17:34Zoai:ri.conicet.gov.ar:11336/24431instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:17:34.561CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Robust MPC for tracking zone regions based on nominal predictions |
title |
Robust MPC for tracking zone regions based on nominal predictions |
spellingShingle |
Robust MPC for tracking zone regions based on nominal predictions Ferramosca, Antonio Model Predictive Control Restricted Constraints Zone Control Target Set Tracking |
title_short |
Robust MPC for tracking zone regions based on nominal predictions |
title_full |
Robust MPC for tracking zone regions based on nominal predictions |
title_fullStr |
Robust MPC for tracking zone regions based on nominal predictions |
title_full_unstemmed |
Robust MPC for tracking zone regions based on nominal predictions |
title_sort |
Robust MPC for tracking zone regions based on nominal predictions |
dc.creator.none.fl_str_mv |
Ferramosca, Antonio Limon, D. González, Alejandro Hernán Alvarado, I. Camacho, E. F. |
author |
Ferramosca, Antonio |
author_facet |
Ferramosca, Antonio Limon, D. González, Alejandro Hernán Alvarado, I. Camacho, E. F. |
author_role |
author |
author2 |
Limon, D. González, Alejandro Hernán Alvarado, I. Camacho, E. F. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Model Predictive Control Restricted Constraints Zone Control Target Set Tracking |
topic |
Model Predictive Control Restricted Constraints Zone Control Target Set Tracking |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This paper deals with the problem of robust tracking of target sets using a model predictive control (MPC) law. Real industries applications often require a control strategy in which some system outputs are controlled within specified ranges or zones (zone control), while some others variables – possibly including input variables – are steered to fixed target or setpoint. From a theoretical point of view, the control objective of this kind of problem can be seen as a target set (in the output space) instead of a target point, since inside the zones there are no preferences between one point or another. This problem is particularly interesting in case of additive disturbances which might push the outputs out of the zones. In this work, a stable robust MPC formulation for constrained linear systems, based on nominal predictions is presented. The main features of this controller are the use of nominal predictions, restricted constraints and the concept of distance from a point to a set as offset cost function. The controller ensures both recursive feasibility and local optimality. The properties of the controller are shown in a simulation test, in which we consider a subsystem of an industrial FCC system. Fil: Ferramosca, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Limon, D.. Universidad de Sevilla. Departamento de Ingeniería de Sistemas y Automática. Escuela Superior de Ingenieros Industriales; España Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Alvarado, I.. Universidad de Sevilla. Departamento de Ingeniería de Sistemas y Automática. Escuela Superior de Ingenieros Industriales; España Fil: Camacho, E. F.. Universidad de Sevilla. Departamento de Ingeniería de Sistemas y Automática. Escuela Superior de Ingenieros Industriales; España |
description |
This paper deals with the problem of robust tracking of target sets using a model predictive control (MPC) law. Real industries applications often require a control strategy in which some system outputs are controlled within specified ranges or zones (zone control), while some others variables – possibly including input variables – are steered to fixed target or setpoint. From a theoretical point of view, the control objective of this kind of problem can be seen as a target set (in the output space) instead of a target point, since inside the zones there are no preferences between one point or another. This problem is particularly interesting in case of additive disturbances which might push the outputs out of the zones. In this work, a stable robust MPC formulation for constrained linear systems, based on nominal predictions is presented. The main features of this controller are the use of nominal predictions, restricted constraints and the concept of distance from a point to a set as offset cost function. The controller ensures both recursive feasibility and local optimality. The properties of the controller are shown in a simulation test, in which we consider a subsystem of an industrial FCC system. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/24431 Ferramosca, Antonio; Limon, D.; González, Alejandro Hernán; Alvarado, I.; Camacho, E. F.; Robust MPC for tracking zone regions based on nominal predictions; Elsevier; Journal Of Process Control; 22; 10; 12-2012; 1966-1974 0959-1524 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/24431 |
identifier_str_mv |
Ferramosca, Antonio; Limon, D.; González, Alejandro Hernán; Alvarado, I.; Camacho, E. F.; Robust MPC for tracking zone regions based on nominal predictions; Elsevier; Journal Of Process Control; 22; 10; 12-2012; 1966-1974 0959-1524 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jprocont.2012.08.013 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0959152412002077 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614129132765184 |
score |
13.070432 |