Robust model predictive control with Zone Control
- Autores
- González, Alejandro Hernán; Marchetti, Jacinto Luis; Odloak, D.
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Model predictive control (MPC) is usually implemented as a control strategy where the system outputs are controlled within specified zones, instead of fixed set points. One strategy to implement the zone control is by means of the selection of different weights for the output error in the control cost function. A disadvantage of this approach is that closed-loop stability cannot be guaranteed, as a different linear controller may be activated at each time step. A way to implement a stable zone control is by means of the use of an infinite horizon cost in which the set point is an additional variable of the control problem. In this case, the set point is restricted to remain inside the output zone and an appropriate output slack variable is included in the optimisation problem to assure the recursive feasibility of the control optimisation problem. Following this approach, a robust MPC is developed for the case of multi-model uncertainty of open-loop stable systems. The controller is devoted to maintain the outputs within their corresponding feasible zone, while reaching the desired optimal input target. Simulation of a process of the oil refining industry illustrates the performance of the proposed strategy.
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. Universidade de Sao Paulo; Brasil
Fil: Marchetti, Jacinto Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Odloak, D.. Universidade de Sao Paulo; Brasil - Materia
-
Model Predictive Control
Zone Control - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/25595
Ver los metadatos del registro completo
id |
CONICETDig_933e3971e77be09eef548e03c6b2425c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/25595 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Robust model predictive control with Zone ControlGonzález, Alejandro HernánMarchetti, Jacinto LuisOdloak, D.Model Predictive ControlZone Controlhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Model predictive control (MPC) is usually implemented as a control strategy where the system outputs are controlled within specified zones, instead of fixed set points. One strategy to implement the zone control is by means of the selection of different weights for the output error in the control cost function. A disadvantage of this approach is that closed-loop stability cannot be guaranteed, as a different linear controller may be activated at each time step. A way to implement a stable zone control is by means of the use of an infinite horizon cost in which the set point is an additional variable of the control problem. In this case, the set point is restricted to remain inside the output zone and an appropriate output slack variable is included in the optimisation problem to assure the recursive feasibility of the control optimisation problem. Following this approach, a robust MPC is developed for the case of multi-model uncertainty of open-loop stable systems. The controller is devoted to maintain the outputs within their corresponding feasible zone, while reaching the desired optimal input target. Simulation of a process of the oil refining industry illustrates the performance of the proposed strategy.Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. Universidade de Sao Paulo; BrasilFil: Marchetti, Jacinto Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Odloak, D.. Universidade de Sao Paulo; BrasilInstitute of Electrical and Electronics Engineers2009-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/25595González, Alejandro Hernán; Marchetti, Jacinto Luis; Odloak, D.; Robust model predictive control with Zone Control; Institute of Electrical and Electronics Engineers; IET Control Theory & Applications; 3; 1; 1-2009; 121-1351751-8644CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1049/iet-cta:20070211info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:03:51Zoai:ri.conicet.gov.ar:11336/25595instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:03:52.065CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Robust model predictive control with Zone Control |
title |
Robust model predictive control with Zone Control |
spellingShingle |
Robust model predictive control with Zone Control González, Alejandro Hernán Model Predictive Control Zone Control |
title_short |
Robust model predictive control with Zone Control |
title_full |
Robust model predictive control with Zone Control |
title_fullStr |
Robust model predictive control with Zone Control |
title_full_unstemmed |
Robust model predictive control with Zone Control |
title_sort |
Robust model predictive control with Zone Control |
dc.creator.none.fl_str_mv |
González, Alejandro Hernán Marchetti, Jacinto Luis Odloak, D. |
author |
González, Alejandro Hernán |
author_facet |
González, Alejandro Hernán Marchetti, Jacinto Luis Odloak, D. |
author_role |
author |
author2 |
Marchetti, Jacinto Luis Odloak, D. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Model Predictive Control Zone Control |
topic |
Model Predictive Control Zone Control |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Model predictive control (MPC) is usually implemented as a control strategy where the system outputs are controlled within specified zones, instead of fixed set points. One strategy to implement the zone control is by means of the selection of different weights for the output error in the control cost function. A disadvantage of this approach is that closed-loop stability cannot be guaranteed, as a different linear controller may be activated at each time step. A way to implement a stable zone control is by means of the use of an infinite horizon cost in which the set point is an additional variable of the control problem. In this case, the set point is restricted to remain inside the output zone and an appropriate output slack variable is included in the optimisation problem to assure the recursive feasibility of the control optimisation problem. Following this approach, a robust MPC is developed for the case of multi-model uncertainty of open-loop stable systems. The controller is devoted to maintain the outputs within their corresponding feasible zone, while reaching the desired optimal input target. Simulation of a process of the oil refining industry illustrates the performance of the proposed strategy. Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. Universidade de Sao Paulo; Brasil Fil: Marchetti, Jacinto Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Odloak, D.. Universidade de Sao Paulo; Brasil |
description |
Model predictive control (MPC) is usually implemented as a control strategy where the system outputs are controlled within specified zones, instead of fixed set points. One strategy to implement the zone control is by means of the selection of different weights for the output error in the control cost function. A disadvantage of this approach is that closed-loop stability cannot be guaranteed, as a different linear controller may be activated at each time step. A way to implement a stable zone control is by means of the use of an infinite horizon cost in which the set point is an additional variable of the control problem. In this case, the set point is restricted to remain inside the output zone and an appropriate output slack variable is included in the optimisation problem to assure the recursive feasibility of the control optimisation problem. Following this approach, a robust MPC is developed for the case of multi-model uncertainty of open-loop stable systems. The controller is devoted to maintain the outputs within their corresponding feasible zone, while reaching the desired optimal input target. Simulation of a process of the oil refining industry illustrates the performance of the proposed strategy. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/25595 González, Alejandro Hernán; Marchetti, Jacinto Luis; Odloak, D.; Robust model predictive control with Zone Control; Institute of Electrical and Electronics Engineers; IET Control Theory & Applications; 3; 1; 1-2009; 121-135 1751-8644 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/25595 |
identifier_str_mv |
González, Alejandro Hernán; Marchetti, Jacinto Luis; Odloak, D.; Robust model predictive control with Zone Control; Institute of Electrical and Electronics Engineers; IET Control Theory & Applications; 3; 1; 1-2009; 121-135 1751-8644 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1049/iet-cta:20070211 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980112856776704 |
score |
12.993085 |