Effective differential Lüroth's theorem

Autores
D'Alfonso, Lisi; Jeronimo, Gabriela Tali; Solernó, Pablo Luis
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper focuses on effectivity aspects of the Lüroth's theorem in differential fields. Let F be an ordinary differential field of characteristic 0 and F〈u〉 be the field of differential rational functions generated by a single indeterminate u. Let be given non-constant rational functions v1,vn∈F〈u〉 generating a differential subfield G⊆F〈u〉. The differential Lüroth's theorem proved by Ritt in 1932 states that there exists v∈G such that G=F〈v〉. Here we prove that the total order and degree of a generator v are bounded by minjord(vj) and (n d(e +1) +1)2e +1, respectively, where e:=maxjord(vj) and d:=maxjdeg(vj). As a byproduct, our techniques enable us to compute a Lüroth generator by dealing with a polynomial ideal in a polynomial ring in finitely many variables.
Fil: D'Alfonso, Lisi. Universidad de Buenos Aires; Argentina
Fil: Jeronimo, Gabriela Tali. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Solernó, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
12H05
12Y05
DIFFERENTIAL ALGEBRA
DIFFERENTIATION INDEX
LÜROTH'S THEOREM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/93864

id CONICETDig_e9e4a0e632f2675b91aff5e7ff78f98b
oai_identifier_str oai:ri.conicet.gov.ar:11336/93864
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Effective differential Lüroth's theoremD'Alfonso, LisiJeronimo, Gabriela TaliSolernó, Pablo Luis12H0512Y05DIFFERENTIAL ALGEBRADIFFERENTIATION INDEXLÜROTH'S THEOREMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This paper focuses on effectivity aspects of the Lüroth's theorem in differential fields. Let F be an ordinary differential field of characteristic 0 and F〈u〉 be the field of differential rational functions generated by a single indeterminate u. Let be given non-constant rational functions v1,vn∈F〈u〉 generating a differential subfield G⊆F〈u〉. The differential Lüroth's theorem proved by Ritt in 1932 states that there exists v∈G such that G=F〈v〉. Here we prove that the total order and degree of a generator v are bounded by minjord(vj) and (n d(e +1) +1)2e +1, respectively, where e:=maxjord(vj) and d:=maxjdeg(vj). As a byproduct, our techniques enable us to compute a Lüroth generator by dealing with a polynomial ideal in a polynomial ring in finitely many variables.Fil: D'Alfonso, Lisi. Universidad de Buenos Aires; ArgentinaFil: Jeronimo, Gabriela Tali. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Solernó, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAcademic Press Inc Elsevier Science2014-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/93864D'Alfonso, Lisi; Jeronimo, Gabriela Tali; Solernó, Pablo Luis; Effective differential Lüroth's theorem; Academic Press Inc Elsevier Science; Journal of Algebra; 406; 5-2014; 1-190021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869314001252info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2014.02.022info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:47:48Zoai:ri.conicet.gov.ar:11336/93864instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:47:48.989CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Effective differential Lüroth's theorem
title Effective differential Lüroth's theorem
spellingShingle Effective differential Lüroth's theorem
D'Alfonso, Lisi
12H05
12Y05
DIFFERENTIAL ALGEBRA
DIFFERENTIATION INDEX
LÜROTH'S THEOREM
title_short Effective differential Lüroth's theorem
title_full Effective differential Lüroth's theorem
title_fullStr Effective differential Lüroth's theorem
title_full_unstemmed Effective differential Lüroth's theorem
title_sort Effective differential Lüroth's theorem
dc.creator.none.fl_str_mv D'Alfonso, Lisi
Jeronimo, Gabriela Tali
Solernó, Pablo Luis
author D'Alfonso, Lisi
author_facet D'Alfonso, Lisi
Jeronimo, Gabriela Tali
Solernó, Pablo Luis
author_role author
author2 Jeronimo, Gabriela Tali
Solernó, Pablo Luis
author2_role author
author
dc.subject.none.fl_str_mv 12H05
12Y05
DIFFERENTIAL ALGEBRA
DIFFERENTIATION INDEX
LÜROTH'S THEOREM
topic 12H05
12Y05
DIFFERENTIAL ALGEBRA
DIFFERENTIATION INDEX
LÜROTH'S THEOREM
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This paper focuses on effectivity aspects of the Lüroth's theorem in differential fields. Let F be an ordinary differential field of characteristic 0 and F〈u〉 be the field of differential rational functions generated by a single indeterminate u. Let be given non-constant rational functions v1,vn∈F〈u〉 generating a differential subfield G⊆F〈u〉. The differential Lüroth's theorem proved by Ritt in 1932 states that there exists v∈G such that G=F〈v〉. Here we prove that the total order and degree of a generator v are bounded by minjord(vj) and (n d(e +1) +1)2e +1, respectively, where e:=maxjord(vj) and d:=maxjdeg(vj). As a byproduct, our techniques enable us to compute a Lüroth generator by dealing with a polynomial ideal in a polynomial ring in finitely many variables.
Fil: D'Alfonso, Lisi. Universidad de Buenos Aires; Argentina
Fil: Jeronimo, Gabriela Tali. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Solernó, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description This paper focuses on effectivity aspects of the Lüroth's theorem in differential fields. Let F be an ordinary differential field of characteristic 0 and F〈u〉 be the field of differential rational functions generated by a single indeterminate u. Let be given non-constant rational functions v1,vn∈F〈u〉 generating a differential subfield G⊆F〈u〉. The differential Lüroth's theorem proved by Ritt in 1932 states that there exists v∈G such that G=F〈v〉. Here we prove that the total order and degree of a generator v are bounded by minjord(vj) and (n d(e +1) +1)2e +1, respectively, where e:=maxjord(vj) and d:=maxjdeg(vj). As a byproduct, our techniques enable us to compute a Lüroth generator by dealing with a polynomial ideal in a polynomial ring in finitely many variables.
publishDate 2014
dc.date.none.fl_str_mv 2014-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/93864
D'Alfonso, Lisi; Jeronimo, Gabriela Tali; Solernó, Pablo Luis; Effective differential Lüroth's theorem; Academic Press Inc Elsevier Science; Journal of Algebra; 406; 5-2014; 1-19
0021-8693
CONICET Digital
CONICET
url http://hdl.handle.net/11336/93864
identifier_str_mv D'Alfonso, Lisi; Jeronimo, Gabriela Tali; Solernó, Pablo Luis; Effective differential Lüroth's theorem; Academic Press Inc Elsevier Science; Journal of Algebra; 406; 5-2014; 1-19
0021-8693
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869314001252
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2014.02.022
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1848597970039078912
score 12.976206