Quantitative aspects of the generalized differential Lüroth's Theorem
- Autores
- D'Alfonso, Lisi; Jeronimo, Gabriela Tali; Solernó, Pablo Luis
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let F be a differential field of characteristic 0, t=t1,…,tm a finite set of differential indeterminates over F and G⊂F〈t〉 a differential field extension of F, generated by nonconstant rational functions α1,…,αn of total degree and order bounded by d and e≥1 respectively. The generalized differential Lüroth's Theorem states that if the differential transcendence degree of G over F is 1, there exists v∈G such that G=F〈v〉. We prove a new explicit upper bound for the degree of v in terms of n,m,d and e. Further, we exhibit an effective procedure to compute v.
Fil: D'Alfonso, Lisi. Universidad de Buenos Aires. Ciclo Básico Común; Argentina
Fil: Jeronimo, Gabriela Tali. Universidad de Buenos Aires. Ciclo Básico Común; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Solernó, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
DIFFERENTIAL ALGEBRA
DIFFERENTIATION INDEX
LÜROTH'S THEOREM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/89718
Ver los metadatos del registro completo
id |
CONICETDig_067a10233d809eaf343e0b7144970b69 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/89718 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quantitative aspects of the generalized differential Lüroth's TheoremD'Alfonso, LisiJeronimo, Gabriela TaliSolernó, Pablo LuisDIFFERENTIAL ALGEBRADIFFERENTIATION INDEXLÜROTH'S THEOREMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let F be a differential field of characteristic 0, t=t1,…,tm a finite set of differential indeterminates over F and G⊂F〈t〉 a differential field extension of F, generated by nonconstant rational functions α1,…,αn of total degree and order bounded by d and e≥1 respectively. The generalized differential Lüroth's Theorem states that if the differential transcendence degree of G over F is 1, there exists v∈G such that G=F〈v〉. We prove a new explicit upper bound for the degree of v in terms of n,m,d and e. Further, we exhibit an effective procedure to compute v.Fil: D'Alfonso, Lisi. Universidad de Buenos Aires. Ciclo Básico Común; ArgentinaFil: Jeronimo, Gabriela Tali. Universidad de Buenos Aires. Ciclo Básico Común; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Solernó, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAcademic Press Inc Elsevier Science2018-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89718D'Alfonso, Lisi; Jeronimo, Gabriela Tali; Solernó, Pablo Luis; Quantitative aspects of the generalized differential Lüroth's Theorem; Academic Press Inc Elsevier Science; Journal of Algebra; 507; 01-8-2018; 547-5700021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869318301492info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2018.01.050info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:14:12Zoai:ri.conicet.gov.ar:11336/89718instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:14:13.002CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quantitative aspects of the generalized differential Lüroth's Theorem |
title |
Quantitative aspects of the generalized differential Lüroth's Theorem |
spellingShingle |
Quantitative aspects of the generalized differential Lüroth's Theorem D'Alfonso, Lisi DIFFERENTIAL ALGEBRA DIFFERENTIATION INDEX LÜROTH'S THEOREM |
title_short |
Quantitative aspects of the generalized differential Lüroth's Theorem |
title_full |
Quantitative aspects of the generalized differential Lüroth's Theorem |
title_fullStr |
Quantitative aspects of the generalized differential Lüroth's Theorem |
title_full_unstemmed |
Quantitative aspects of the generalized differential Lüroth's Theorem |
title_sort |
Quantitative aspects of the generalized differential Lüroth's Theorem |
dc.creator.none.fl_str_mv |
D'Alfonso, Lisi Jeronimo, Gabriela Tali Solernó, Pablo Luis |
author |
D'Alfonso, Lisi |
author_facet |
D'Alfonso, Lisi Jeronimo, Gabriela Tali Solernó, Pablo Luis |
author_role |
author |
author2 |
Jeronimo, Gabriela Tali Solernó, Pablo Luis |
author2_role |
author author |
dc.subject.none.fl_str_mv |
DIFFERENTIAL ALGEBRA DIFFERENTIATION INDEX LÜROTH'S THEOREM |
topic |
DIFFERENTIAL ALGEBRA DIFFERENTIATION INDEX LÜROTH'S THEOREM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let F be a differential field of characteristic 0, t=t1,…,tm a finite set of differential indeterminates over F and G⊂F〈t〉 a differential field extension of F, generated by nonconstant rational functions α1,…,αn of total degree and order bounded by d and e≥1 respectively. The generalized differential Lüroth's Theorem states that if the differential transcendence degree of G over F is 1, there exists v∈G such that G=F〈v〉. We prove a new explicit upper bound for the degree of v in terms of n,m,d and e. Further, we exhibit an effective procedure to compute v. Fil: D'Alfonso, Lisi. Universidad de Buenos Aires. Ciclo Básico Común; Argentina Fil: Jeronimo, Gabriela Tali. Universidad de Buenos Aires. Ciclo Básico Común; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Solernó, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
Let F be a differential field of characteristic 0, t=t1,…,tm a finite set of differential indeterminates over F and G⊂F〈t〉 a differential field extension of F, generated by nonconstant rational functions α1,…,αn of total degree and order bounded by d and e≥1 respectively. The generalized differential Lüroth's Theorem states that if the differential transcendence degree of G over F is 1, there exists v∈G such that G=F〈v〉. We prove a new explicit upper bound for the degree of v in terms of n,m,d and e. Further, we exhibit an effective procedure to compute v. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-08-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/89718 D'Alfonso, Lisi; Jeronimo, Gabriela Tali; Solernó, Pablo Luis; Quantitative aspects of the generalized differential Lüroth's Theorem; Academic Press Inc Elsevier Science; Journal of Algebra; 507; 01-8-2018; 547-570 0021-8693 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/89718 |
identifier_str_mv |
D'Alfonso, Lisi; Jeronimo, Gabriela Tali; Solernó, Pablo Luis; Quantitative aspects of the generalized differential Lüroth's Theorem; Academic Press Inc Elsevier Science; Journal of Algebra; 507; 01-8-2018; 547-570 0021-8693 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869318301492 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2018.01.050 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606477842939904 |
score |
13.001348 |