A New Approach to the Optimization of the CVRP through Genetic Algorithms
- Autores
- Frutos, Mariano; Tohmé, Fernando Abel
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper presents a new approach to the analysis of complex distribution problems under capacity constraints. These problems are known in the literature as CVRPs (Capacitated Vehicle Routing Problems). The procedure introduced in this paper optimizes a transformed variant of a CVRP. It starts generating feasible clusters and codifies their ordering. In the next stage the procedure feeds this information into a genetic algorithm for its optimization. This makes the algo-rithm independent of the constraints and improves its performance. Van Breedam problems have been used to test this technique. While the results obtained are similar to those in other works, the processing times are longer.
Fil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; Argentina - Materia
-
VEHICLE ROUTING PROBLEM
GENETIC ALGORITHMS
MODELING
OPTIMIZATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/59378
Ver los metadatos del registro completo
id |
CONICETDig_e9d6a12e70fab24a61fb8aa6b8b73b36 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/59378 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A New Approach to the Optimization of the CVRP through Genetic AlgorithmsFrutos, MarianoTohmé, Fernando AbelVEHICLE ROUTING PROBLEMGENETIC ALGORITHMSMODELINGOPTIMIZATIONhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2This paper presents a new approach to the analysis of complex distribution problems under capacity constraints. These problems are known in the literature as CVRPs (Capacitated Vehicle Routing Problems). The procedure introduced in this paper optimizes a transformed variant of a CVRP. It starts generating feasible clusters and codifies their ordering. In the next stage the procedure feeds this information into a genetic algorithm for its optimization. This makes the algo-rithm independent of the constraints and improves its performance. Van Breedam problems have been used to test this technique. While the results obtained are similar to those in other works, the processing times are longer.Fil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; ArgentinaScientific Research2012-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59378Frutos, Mariano; Tohmé, Fernando Abel; A New Approach to the Optimization of the CVRP through Genetic Algorithms; Scientific Research; American Journal of Operations Research; 2; 4; 11-2012; 495-5012160-88302160-8849CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.scirp.org/journal/PaperInformation.aspx?PaperID=25145#.VUUh9_l_Okoinfo:eu-repo/semantics/altIdentifier/doi/10.4236/ajor.2012.24058info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:13:01Zoai:ri.conicet.gov.ar:11336/59378instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:13:01.294CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A New Approach to the Optimization of the CVRP through Genetic Algorithms |
title |
A New Approach to the Optimization of the CVRP through Genetic Algorithms |
spellingShingle |
A New Approach to the Optimization of the CVRP through Genetic Algorithms Frutos, Mariano VEHICLE ROUTING PROBLEM GENETIC ALGORITHMS MODELING OPTIMIZATION |
title_short |
A New Approach to the Optimization of the CVRP through Genetic Algorithms |
title_full |
A New Approach to the Optimization of the CVRP through Genetic Algorithms |
title_fullStr |
A New Approach to the Optimization of the CVRP through Genetic Algorithms |
title_full_unstemmed |
A New Approach to the Optimization of the CVRP through Genetic Algorithms |
title_sort |
A New Approach to the Optimization of the CVRP through Genetic Algorithms |
dc.creator.none.fl_str_mv |
Frutos, Mariano Tohmé, Fernando Abel |
author |
Frutos, Mariano |
author_facet |
Frutos, Mariano Tohmé, Fernando Abel |
author_role |
author |
author2 |
Tohmé, Fernando Abel |
author2_role |
author |
dc.subject.none.fl_str_mv |
VEHICLE ROUTING PROBLEM GENETIC ALGORITHMS MODELING OPTIMIZATION |
topic |
VEHICLE ROUTING PROBLEM GENETIC ALGORITHMS MODELING OPTIMIZATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This paper presents a new approach to the analysis of complex distribution problems under capacity constraints. These problems are known in the literature as CVRPs (Capacitated Vehicle Routing Problems). The procedure introduced in this paper optimizes a transformed variant of a CVRP. It starts generating feasible clusters and codifies their ordering. In the next stage the procedure feeds this information into a genetic algorithm for its optimization. This makes the algo-rithm independent of the constraints and improves its performance. Van Breedam problems have been used to test this technique. While the results obtained are similar to those in other works, the processing times are longer. Fil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; Argentina |
description |
This paper presents a new approach to the analysis of complex distribution problems under capacity constraints. These problems are known in the literature as CVRPs (Capacitated Vehicle Routing Problems). The procedure introduced in this paper optimizes a transformed variant of a CVRP. It starts generating feasible clusters and codifies their ordering. In the next stage the procedure feeds this information into a genetic algorithm for its optimization. This makes the algo-rithm independent of the constraints and improves its performance. Van Breedam problems have been used to test this technique. While the results obtained are similar to those in other works, the processing times are longer. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/59378 Frutos, Mariano; Tohmé, Fernando Abel; A New Approach to the Optimization of the CVRP through Genetic Algorithms; Scientific Research; American Journal of Operations Research; 2; 4; 11-2012; 495-501 2160-8830 2160-8849 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/59378 |
identifier_str_mv |
Frutos, Mariano; Tohmé, Fernando Abel; A New Approach to the Optimization of the CVRP through Genetic Algorithms; Scientific Research; American Journal of Operations Research; 2; 4; 11-2012; 495-501 2160-8830 2160-8849 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.scirp.org/journal/PaperInformation.aspx?PaperID=25145#.VUUh9_l_Oko info:eu-repo/semantics/altIdentifier/doi/10.4236/ajor.2012.24058 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Scientific Research |
publisher.none.fl_str_mv |
Scientific Research |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980683960549376 |
score |
12.993085 |