Integrating packing and distribution problems and optimization through mathematical programming
- Autores
- Miguel, Fabio Maximiliano; Frutos, Mariano; Tohmé, Fernando Abel; Méndez, Máximo
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper analyzes the integration of two combinatorial problems that frequently arise in production and distribution systems. One is the Bin Packing Problem (BPP) problem, which involves finding an ordering of some objects of different volumes to be packed into the minimal number of containers of the same or different size. An optimal solution to this NP-Hard problem can be approximated by means of meta-heuristic methods. On the other hand, we consider the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW), which is a variant of the Travelling Salesman Problem (again a NP-Hard problem) with extra constraints. Here we model those two problems in a single framework and use an evolutionary meta-heuristics to solve them jointly. Furthermore, we use data from a real world company as a test-bed for the method introduced here.
Fil: Miguel, Fabio Maximiliano. Universidad Nacional de Río Negro; Argentina
Fil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Méndez, Máximo. Universidad de Las Palmas de Gran Canaria; España - Materia
-
BIN PACKING PROBLEM
CAPACITATED VEHICLE ROUTING
LOGISTICS
OPTIMIZATION
PROBLEM WITH TIME WINDOWS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/52079
Ver los metadatos del registro completo
id |
CONICETDig_618d4e7ad1ac18a07b6aeda208c8bff5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/52079 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Integrating packing and distribution problems and optimization through mathematical programmingMiguel, Fabio MaximilianoFrutos, MarianoTohmé, Fernando AbelMéndez, MáximoBIN PACKING PROBLEMCAPACITATED VEHICLE ROUTINGLOGISTICSOPTIMIZATIONPROBLEM WITH TIME WINDOWShttps://purl.org/becyt/ford/5.2https://purl.org/becyt/ford/5This paper analyzes the integration of two combinatorial problems that frequently arise in production and distribution systems. One is the Bin Packing Problem (BPP) problem, which involves finding an ordering of some objects of different volumes to be packed into the minimal number of containers of the same or different size. An optimal solution to this NP-Hard problem can be approximated by means of meta-heuristic methods. On the other hand, we consider the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW), which is a variant of the Travelling Salesman Problem (again a NP-Hard problem) with extra constraints. Here we model those two problems in a single framework and use an evolutionary meta-heuristics to solve them jointly. Furthermore, we use data from a real world company as a test-bed for the method introduced here.Fil: Miguel, Fabio Maximiliano. Universidad Nacional de Río Negro; ArgentinaFil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; ArgentinaFil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Méndez, Máximo. Universidad de Las Palmas de Gran Canaria; EspañaGrowing Science2016-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/52079Miguel, Fabio Maximiliano; Frutos, Mariano; Tohmé, Fernando Abel; Méndez, Máximo; Integrating packing and distribution problems and optimization through mathematical programming; Growing Science; Decision Science Letters; 5; 2; 10-2016; 317-3261929-5804CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://growingscience.com/beta/dsl/2179-integrating-packing-and-distribution-problems-and-optimization-through-mathematical-programming.htmlinfo:eu-repo/semantics/altIdentifier/doi/10.5267/j.dsl.2015.10.002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:03:41Zoai:ri.conicet.gov.ar:11336/52079instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:03:41.925CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Integrating packing and distribution problems and optimization through mathematical programming |
title |
Integrating packing and distribution problems and optimization through mathematical programming |
spellingShingle |
Integrating packing and distribution problems and optimization through mathematical programming Miguel, Fabio Maximiliano BIN PACKING PROBLEM CAPACITATED VEHICLE ROUTING LOGISTICS OPTIMIZATION PROBLEM WITH TIME WINDOWS |
title_short |
Integrating packing and distribution problems and optimization through mathematical programming |
title_full |
Integrating packing and distribution problems and optimization through mathematical programming |
title_fullStr |
Integrating packing and distribution problems and optimization through mathematical programming |
title_full_unstemmed |
Integrating packing and distribution problems and optimization through mathematical programming |
title_sort |
Integrating packing and distribution problems and optimization through mathematical programming |
dc.creator.none.fl_str_mv |
Miguel, Fabio Maximiliano Frutos, Mariano Tohmé, Fernando Abel Méndez, Máximo |
author |
Miguel, Fabio Maximiliano |
author_facet |
Miguel, Fabio Maximiliano Frutos, Mariano Tohmé, Fernando Abel Méndez, Máximo |
author_role |
author |
author2 |
Frutos, Mariano Tohmé, Fernando Abel Méndez, Máximo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
BIN PACKING PROBLEM CAPACITATED VEHICLE ROUTING LOGISTICS OPTIMIZATION PROBLEM WITH TIME WINDOWS |
topic |
BIN PACKING PROBLEM CAPACITATED VEHICLE ROUTING LOGISTICS OPTIMIZATION PROBLEM WITH TIME WINDOWS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/5.2 https://purl.org/becyt/ford/5 |
dc.description.none.fl_txt_mv |
This paper analyzes the integration of two combinatorial problems that frequently arise in production and distribution systems. One is the Bin Packing Problem (BPP) problem, which involves finding an ordering of some objects of different volumes to be packed into the minimal number of containers of the same or different size. An optimal solution to this NP-Hard problem can be approximated by means of meta-heuristic methods. On the other hand, we consider the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW), which is a variant of the Travelling Salesman Problem (again a NP-Hard problem) with extra constraints. Here we model those two problems in a single framework and use an evolutionary meta-heuristics to solve them jointly. Furthermore, we use data from a real world company as a test-bed for the method introduced here. Fil: Miguel, Fabio Maximiliano. Universidad Nacional de Río Negro; Argentina Fil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina Fil: Méndez, Máximo. Universidad de Las Palmas de Gran Canaria; España |
description |
This paper analyzes the integration of two combinatorial problems that frequently arise in production and distribution systems. One is the Bin Packing Problem (BPP) problem, which involves finding an ordering of some objects of different volumes to be packed into the minimal number of containers of the same or different size. An optimal solution to this NP-Hard problem can be approximated by means of meta-heuristic methods. On the other hand, we consider the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW), which is a variant of the Travelling Salesman Problem (again a NP-Hard problem) with extra constraints. Here we model those two problems in a single framework and use an evolutionary meta-heuristics to solve them jointly. Furthermore, we use data from a real world company as a test-bed for the method introduced here. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/52079 Miguel, Fabio Maximiliano; Frutos, Mariano; Tohmé, Fernando Abel; Méndez, Máximo; Integrating packing and distribution problems and optimization through mathematical programming; Growing Science; Decision Science Letters; 5; 2; 10-2016; 317-326 1929-5804 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/52079 |
identifier_str_mv |
Miguel, Fabio Maximiliano; Frutos, Mariano; Tohmé, Fernando Abel; Méndez, Máximo; Integrating packing and distribution problems and optimization through mathematical programming; Growing Science; Decision Science Letters; 5; 2; 10-2016; 317-326 1929-5804 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://growingscience.com/beta/dsl/2179-integrating-packing-and-distribution-problems-and-optimization-through-mathematical-programming.html info:eu-repo/semantics/altIdentifier/doi/10.5267/j.dsl.2015.10.002 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Growing Science |
publisher.none.fl_str_mv |
Growing Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980101108531200 |
score |
12.993085 |