Cellular Genetic Algorithms: Understanding the Behavior of Using Neighborhoods
- Autores
- Salto, Carolina; Alba, Enrique
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we analyze the neighborhood effect in the selection of parents on an evolutionary algorithm. In this line, we compare a cellular genetic algorithm (cGA), which intrinsically uses the neighbor notion in the mating process, with a modified genetic algorithm including the concept of neighborhood in the selection of parents. Additionally, we analyze the neighborhood size considered for the selection of parent, trying to discover if a quasi-optimal size exists. All the analysis is carried out from a traditional analytic sense to a theoretical point of view regarding evolvability measures. The experimental results suggest that the neighbor effect is important in the performance of an evolutionary algorithm and could provide the cGA with higher chances of success in well-known optimization problems. Regarding the neighborhood size, there is an evidence that a range of neighbors of six, plus/minus two, individuals leads to the cGA to perform more efficiently than other considered sizes.
Fil: Salto, Carolina. Universidad Nacional de La Pampa. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina
Fil: Alba, Enrique. Universidad de Málaga; España - Materia
-
CELLULAR GENETIC ALGORITHMS
NEIGHBORHOOD SIZE
PROBLEM OPTIMIZATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/154756
Ver los metadatos del registro completo
id |
CONICETDig_ac72b0790e756fc6d22119be30909e5c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/154756 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Cellular Genetic Algorithms: Understanding the Behavior of Using NeighborhoodsSalto, CarolinaAlba, EnriqueCELLULAR GENETIC ALGORITHMSNEIGHBORHOOD SIZEPROBLEM OPTIMIZATIONhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this paper, we analyze the neighborhood effect in the selection of parents on an evolutionary algorithm. In this line, we compare a cellular genetic algorithm (cGA), which intrinsically uses the neighbor notion in the mating process, with a modified genetic algorithm including the concept of neighborhood in the selection of parents. Additionally, we analyze the neighborhood size considered for the selection of parent, trying to discover if a quasi-optimal size exists. All the analysis is carried out from a traditional analytic sense to a theoretical point of view regarding evolvability measures. The experimental results suggest that the neighbor effect is important in the performance of an evolutionary algorithm and could provide the cGA with higher chances of success in well-known optimization problems. Regarding the neighborhood size, there is an evidence that a range of neighbors of six, plus/minus two, individuals leads to the cGA to perform more efficiently than other considered sizes.Fil: Salto, Carolina. Universidad Nacional de La Pampa. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; ArgentinaFil: Alba, Enrique. Universidad de Málaga; EspañaTaylor & Francis2019-07-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/154756Salto, Carolina; Alba, Enrique; Cellular Genetic Algorithms: Understanding the Behavior of Using Neighborhoods; Taylor & Francis; Applied Artificial Intelligence; 33; 10; 25-7-2019; 863-8800883-95141087-6545CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/08839514.2019.1646005info:eu-repo/semantics/altIdentifier/doi/10.1080/08839514.2019.1646005info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:09Zoai:ri.conicet.gov.ar:11336/154756instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:09.457CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Cellular Genetic Algorithms: Understanding the Behavior of Using Neighborhoods |
title |
Cellular Genetic Algorithms: Understanding the Behavior of Using Neighborhoods |
spellingShingle |
Cellular Genetic Algorithms: Understanding the Behavior of Using Neighborhoods Salto, Carolina CELLULAR GENETIC ALGORITHMS NEIGHBORHOOD SIZE PROBLEM OPTIMIZATION |
title_short |
Cellular Genetic Algorithms: Understanding the Behavior of Using Neighborhoods |
title_full |
Cellular Genetic Algorithms: Understanding the Behavior of Using Neighborhoods |
title_fullStr |
Cellular Genetic Algorithms: Understanding the Behavior of Using Neighborhoods |
title_full_unstemmed |
Cellular Genetic Algorithms: Understanding the Behavior of Using Neighborhoods |
title_sort |
Cellular Genetic Algorithms: Understanding the Behavior of Using Neighborhoods |
dc.creator.none.fl_str_mv |
Salto, Carolina Alba, Enrique |
author |
Salto, Carolina |
author_facet |
Salto, Carolina Alba, Enrique |
author_role |
author |
author2 |
Alba, Enrique |
author2_role |
author |
dc.subject.none.fl_str_mv |
CELLULAR GENETIC ALGORITHMS NEIGHBORHOOD SIZE PROBLEM OPTIMIZATION |
topic |
CELLULAR GENETIC ALGORITHMS NEIGHBORHOOD SIZE PROBLEM OPTIMIZATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, we analyze the neighborhood effect in the selection of parents on an evolutionary algorithm. In this line, we compare a cellular genetic algorithm (cGA), which intrinsically uses the neighbor notion in the mating process, with a modified genetic algorithm including the concept of neighborhood in the selection of parents. Additionally, we analyze the neighborhood size considered for the selection of parent, trying to discover if a quasi-optimal size exists. All the analysis is carried out from a traditional analytic sense to a theoretical point of view regarding evolvability measures. The experimental results suggest that the neighbor effect is important in the performance of an evolutionary algorithm and could provide the cGA with higher chances of success in well-known optimization problems. Regarding the neighborhood size, there is an evidence that a range of neighbors of six, plus/minus two, individuals leads to the cGA to perform more efficiently than other considered sizes. Fil: Salto, Carolina. Universidad Nacional de La Pampa. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina Fil: Alba, Enrique. Universidad de Málaga; España |
description |
In this paper, we analyze the neighborhood effect in the selection of parents on an evolutionary algorithm. In this line, we compare a cellular genetic algorithm (cGA), which intrinsically uses the neighbor notion in the mating process, with a modified genetic algorithm including the concept of neighborhood in the selection of parents. Additionally, we analyze the neighborhood size considered for the selection of parent, trying to discover if a quasi-optimal size exists. All the analysis is carried out from a traditional analytic sense to a theoretical point of view regarding evolvability measures. The experimental results suggest that the neighbor effect is important in the performance of an evolutionary algorithm and could provide the cGA with higher chances of success in well-known optimization problems. Regarding the neighborhood size, there is an evidence that a range of neighbors of six, plus/minus two, individuals leads to the cGA to perform more efficiently than other considered sizes. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07-25 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/154756 Salto, Carolina; Alba, Enrique; Cellular Genetic Algorithms: Understanding the Behavior of Using Neighborhoods; Taylor & Francis; Applied Artificial Intelligence; 33; 10; 25-7-2019; 863-880 0883-9514 1087-6545 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/154756 |
identifier_str_mv |
Salto, Carolina; Alba, Enrique; Cellular Genetic Algorithms: Understanding the Behavior of Using Neighborhoods; Taylor & Francis; Applied Artificial Intelligence; 33; 10; 25-7-2019; 863-880 0883-9514 1087-6545 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/08839514.2019.1646005 info:eu-repo/semantics/altIdentifier/doi/10.1080/08839514.2019.1646005 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269564114567168 |
score |
13.13397 |