A Cluster-based Optimization Approach for the Multi-depot Heterogeneous Fleet Vehicle Routing Problem with Time Windows
- Autores
- Dondo, Rodolfo Gabriel; Cerda, Jaime
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper presents a novel three-phase heuristic/algorithmic approach for the multi-depot routing problem with time windows and heterogeneous vehicles. It has been derived from embedding a heuristic-based clustering algorithm within a VRPTW optimization framework. To this purpose, a rigorous MILP mathematical model for the VRPTW problem is first introduced. Likewise other optimization approaches, the new formulation can efficiently solve case studies involving at most 25 nodes to optimality. To overcome this limitation, a preprocessing stage clustering nodes together is initially performed to yield a more compact cluster-based MILP problem formulation. In this way, a hierarchical hybrid procedure involving one heuristic and two algorithmic phases was developed. Phase I aims to identifying a set of cost-effective feasible clusters while Phase II assigns clusters to vehicles and sequences them on each tour by using the cluster-based MILP formulation. Ordering nodes within clusters and scheduling vehicle arrival times at customer locations for each tour through solving a small MILP model is finally performed at Phase III. Numerous benchmark problems featuring different sizes, clustered/random customer locations and time window distributions have been solved at acceptable CPU times.
Fil: Dondo, Rodolfo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Cerda, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina - Materia
-
Vehicle Routing Problem
Cluster-Based Approach
Milp Model
Scheduling - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/25941
Ver los metadatos del registro completo
id |
CONICETDig_fc59c4ee7ec07e0f1f8ddfb916e0861a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/25941 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Cluster-based Optimization Approach for the Multi-depot Heterogeneous Fleet Vehicle Routing Problem with Time WindowsDondo, Rodolfo GabrielCerda, JaimeVehicle Routing ProblemCluster-Based ApproachMilp ModelSchedulinghttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2This paper presents a novel three-phase heuristic/algorithmic approach for the multi-depot routing problem with time windows and heterogeneous vehicles. It has been derived from embedding a heuristic-based clustering algorithm within a VRPTW optimization framework. To this purpose, a rigorous MILP mathematical model for the VRPTW problem is first introduced. Likewise other optimization approaches, the new formulation can efficiently solve case studies involving at most 25 nodes to optimality. To overcome this limitation, a preprocessing stage clustering nodes together is initially performed to yield a more compact cluster-based MILP problem formulation. In this way, a hierarchical hybrid procedure involving one heuristic and two algorithmic phases was developed. Phase I aims to identifying a set of cost-effective feasible clusters while Phase II assigns clusters to vehicles and sequences them on each tour by using the cluster-based MILP formulation. Ordering nodes within clusters and scheduling vehicle arrival times at customer locations for each tour through solving a small MILP model is finally performed at Phase III. Numerous benchmark problems featuring different sizes, clustered/random customer locations and time window distributions have been solved at acceptable CPU times.Fil: Dondo, Rodolfo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Cerda, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaElsevier Science2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/25941Dondo, Rodolfo Gabriel; Cerda, Jaime; A Cluster-based Optimization Approach for the Multi-depot Heterogeneous Fleet Vehicle Routing Problem with Time Windows; Elsevier Science; European Journal Of Operational Research; 176; 3; 12-2007; 1478-15070377-2217CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ejor.2004.07.077info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0377221705008672info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:14:53Zoai:ri.conicet.gov.ar:11336/25941instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:14:54.038CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Cluster-based Optimization Approach for the Multi-depot Heterogeneous Fleet Vehicle Routing Problem with Time Windows |
title |
A Cluster-based Optimization Approach for the Multi-depot Heterogeneous Fleet Vehicle Routing Problem with Time Windows |
spellingShingle |
A Cluster-based Optimization Approach for the Multi-depot Heterogeneous Fleet Vehicle Routing Problem with Time Windows Dondo, Rodolfo Gabriel Vehicle Routing Problem Cluster-Based Approach Milp Model Scheduling |
title_short |
A Cluster-based Optimization Approach for the Multi-depot Heterogeneous Fleet Vehicle Routing Problem with Time Windows |
title_full |
A Cluster-based Optimization Approach for the Multi-depot Heterogeneous Fleet Vehicle Routing Problem with Time Windows |
title_fullStr |
A Cluster-based Optimization Approach for the Multi-depot Heterogeneous Fleet Vehicle Routing Problem with Time Windows |
title_full_unstemmed |
A Cluster-based Optimization Approach for the Multi-depot Heterogeneous Fleet Vehicle Routing Problem with Time Windows |
title_sort |
A Cluster-based Optimization Approach for the Multi-depot Heterogeneous Fleet Vehicle Routing Problem with Time Windows |
dc.creator.none.fl_str_mv |
Dondo, Rodolfo Gabriel Cerda, Jaime |
author |
Dondo, Rodolfo Gabriel |
author_facet |
Dondo, Rodolfo Gabriel Cerda, Jaime |
author_role |
author |
author2 |
Cerda, Jaime |
author2_role |
author |
dc.subject.none.fl_str_mv |
Vehicle Routing Problem Cluster-Based Approach Milp Model Scheduling |
topic |
Vehicle Routing Problem Cluster-Based Approach Milp Model Scheduling |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This paper presents a novel three-phase heuristic/algorithmic approach for the multi-depot routing problem with time windows and heterogeneous vehicles. It has been derived from embedding a heuristic-based clustering algorithm within a VRPTW optimization framework. To this purpose, a rigorous MILP mathematical model for the VRPTW problem is first introduced. Likewise other optimization approaches, the new formulation can efficiently solve case studies involving at most 25 nodes to optimality. To overcome this limitation, a preprocessing stage clustering nodes together is initially performed to yield a more compact cluster-based MILP problem formulation. In this way, a hierarchical hybrid procedure involving one heuristic and two algorithmic phases was developed. Phase I aims to identifying a set of cost-effective feasible clusters while Phase II assigns clusters to vehicles and sequences them on each tour by using the cluster-based MILP formulation. Ordering nodes within clusters and scheduling vehicle arrival times at customer locations for each tour through solving a small MILP model is finally performed at Phase III. Numerous benchmark problems featuring different sizes, clustered/random customer locations and time window distributions have been solved at acceptable CPU times. Fil: Dondo, Rodolfo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Cerda, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina |
description |
This paper presents a novel three-phase heuristic/algorithmic approach for the multi-depot routing problem with time windows and heterogeneous vehicles. It has been derived from embedding a heuristic-based clustering algorithm within a VRPTW optimization framework. To this purpose, a rigorous MILP mathematical model for the VRPTW problem is first introduced. Likewise other optimization approaches, the new formulation can efficiently solve case studies involving at most 25 nodes to optimality. To overcome this limitation, a preprocessing stage clustering nodes together is initially performed to yield a more compact cluster-based MILP problem formulation. In this way, a hierarchical hybrid procedure involving one heuristic and two algorithmic phases was developed. Phase I aims to identifying a set of cost-effective feasible clusters while Phase II assigns clusters to vehicles and sequences them on each tour by using the cluster-based MILP formulation. Ordering nodes within clusters and scheduling vehicle arrival times at customer locations for each tour through solving a small MILP model is finally performed at Phase III. Numerous benchmark problems featuring different sizes, clustered/random customer locations and time window distributions have been solved at acceptable CPU times. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/25941 Dondo, Rodolfo Gabriel; Cerda, Jaime; A Cluster-based Optimization Approach for the Multi-depot Heterogeneous Fleet Vehicle Routing Problem with Time Windows; Elsevier Science; European Journal Of Operational Research; 176; 3; 12-2007; 1478-1507 0377-2217 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/25941 |
identifier_str_mv |
Dondo, Rodolfo Gabriel; Cerda, Jaime; A Cluster-based Optimization Approach for the Multi-depot Heterogeneous Fleet Vehicle Routing Problem with Time Windows; Elsevier Science; European Journal Of Operational Research; 176; 3; 12-2007; 1478-1507 0377-2217 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ejor.2004.07.077 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0377221705008672 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980799311249408 |
score |
12.993085 |