A Cluster-based Optimization Approach for the Multi-depot Heterogeneous Fleet Vehicle Routing Problem with Time Windows

Autores
Dondo, Rodolfo Gabriel; Cerda, Jaime
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper presents a novel three-phase heuristic/algorithmic approach for the multi-depot routing problem with time windows and heterogeneous vehicles. It has been derived from embedding a heuristic-based clustering algorithm within a VRPTW optimization framework. To this purpose, a rigorous MILP mathematical model for the VRPTW problem is first introduced. Likewise other optimization approaches, the new formulation can efficiently solve case studies involving at most 25 nodes to optimality. To overcome this limitation, a preprocessing stage clustering nodes together is initially performed to yield a more compact cluster-based MILP problem formulation. In this way, a hierarchical hybrid procedure involving one heuristic and two algorithmic phases was developed. Phase I aims to identifying a set of cost-effective feasible clusters while Phase II assigns clusters to vehicles and sequences them on each tour by using the cluster-based MILP formulation. Ordering nodes within clusters and scheduling vehicle arrival times at customer locations for each tour through solving a small MILP model is finally performed at Phase III. Numerous benchmark problems featuring different sizes, clustered/random customer locations and time window distributions have been solved at acceptable CPU times.
Fil: Dondo, Rodolfo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Cerda, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Materia
Vehicle Routing Problem
Cluster-Based Approach
Milp Model
Scheduling
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/25941

id CONICETDig_fc59c4ee7ec07e0f1f8ddfb916e0861a
oai_identifier_str oai:ri.conicet.gov.ar:11336/25941
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A Cluster-based Optimization Approach for the Multi-depot Heterogeneous Fleet Vehicle Routing Problem with Time WindowsDondo, Rodolfo GabrielCerda, JaimeVehicle Routing ProblemCluster-Based ApproachMilp ModelSchedulinghttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2This paper presents a novel three-phase heuristic/algorithmic approach for the multi-depot routing problem with time windows and heterogeneous vehicles. It has been derived from embedding a heuristic-based clustering algorithm within a VRPTW optimization framework. To this purpose, a rigorous MILP mathematical model for the VRPTW problem is first introduced. Likewise other optimization approaches, the new formulation can efficiently solve case studies involving at most 25 nodes to optimality. To overcome this limitation, a preprocessing stage clustering nodes together is initially performed to yield a more compact cluster-based MILP problem formulation. In this way, a hierarchical hybrid procedure involving one heuristic and two algorithmic phases was developed. Phase I aims to identifying a set of cost-effective feasible clusters while Phase II assigns clusters to vehicles and sequences them on each tour by using the cluster-based MILP formulation. Ordering nodes within clusters and scheduling vehicle arrival times at customer locations for each tour through solving a small MILP model is finally performed at Phase III. Numerous benchmark problems featuring different sizes, clustered/random customer locations and time window distributions have been solved at acceptable CPU times.Fil: Dondo, Rodolfo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Cerda, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaElsevier Science2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/25941Dondo, Rodolfo Gabriel; Cerda, Jaime; A Cluster-based Optimization Approach for the Multi-depot Heterogeneous Fleet Vehicle Routing Problem with Time Windows; Elsevier Science; European Journal Of Operational Research; 176; 3; 12-2007; 1478-15070377-2217CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ejor.2004.07.077info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0377221705008672info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:14:53Zoai:ri.conicet.gov.ar:11336/25941instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:14:54.038CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A Cluster-based Optimization Approach for the Multi-depot Heterogeneous Fleet Vehicle Routing Problem with Time Windows
title A Cluster-based Optimization Approach for the Multi-depot Heterogeneous Fleet Vehicle Routing Problem with Time Windows
spellingShingle A Cluster-based Optimization Approach for the Multi-depot Heterogeneous Fleet Vehicle Routing Problem with Time Windows
Dondo, Rodolfo Gabriel
Vehicle Routing Problem
Cluster-Based Approach
Milp Model
Scheduling
title_short A Cluster-based Optimization Approach for the Multi-depot Heterogeneous Fleet Vehicle Routing Problem with Time Windows
title_full A Cluster-based Optimization Approach for the Multi-depot Heterogeneous Fleet Vehicle Routing Problem with Time Windows
title_fullStr A Cluster-based Optimization Approach for the Multi-depot Heterogeneous Fleet Vehicle Routing Problem with Time Windows
title_full_unstemmed A Cluster-based Optimization Approach for the Multi-depot Heterogeneous Fleet Vehicle Routing Problem with Time Windows
title_sort A Cluster-based Optimization Approach for the Multi-depot Heterogeneous Fleet Vehicle Routing Problem with Time Windows
dc.creator.none.fl_str_mv Dondo, Rodolfo Gabriel
Cerda, Jaime
author Dondo, Rodolfo Gabriel
author_facet Dondo, Rodolfo Gabriel
Cerda, Jaime
author_role author
author2 Cerda, Jaime
author2_role author
dc.subject.none.fl_str_mv Vehicle Routing Problem
Cluster-Based Approach
Milp Model
Scheduling
topic Vehicle Routing Problem
Cluster-Based Approach
Milp Model
Scheduling
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This paper presents a novel three-phase heuristic/algorithmic approach for the multi-depot routing problem with time windows and heterogeneous vehicles. It has been derived from embedding a heuristic-based clustering algorithm within a VRPTW optimization framework. To this purpose, a rigorous MILP mathematical model for the VRPTW problem is first introduced. Likewise other optimization approaches, the new formulation can efficiently solve case studies involving at most 25 nodes to optimality. To overcome this limitation, a preprocessing stage clustering nodes together is initially performed to yield a more compact cluster-based MILP problem formulation. In this way, a hierarchical hybrid procedure involving one heuristic and two algorithmic phases was developed. Phase I aims to identifying a set of cost-effective feasible clusters while Phase II assigns clusters to vehicles and sequences them on each tour by using the cluster-based MILP formulation. Ordering nodes within clusters and scheduling vehicle arrival times at customer locations for each tour through solving a small MILP model is finally performed at Phase III. Numerous benchmark problems featuring different sizes, clustered/random customer locations and time window distributions have been solved at acceptable CPU times.
Fil: Dondo, Rodolfo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Cerda, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
description This paper presents a novel three-phase heuristic/algorithmic approach for the multi-depot routing problem with time windows and heterogeneous vehicles. It has been derived from embedding a heuristic-based clustering algorithm within a VRPTW optimization framework. To this purpose, a rigorous MILP mathematical model for the VRPTW problem is first introduced. Likewise other optimization approaches, the new formulation can efficiently solve case studies involving at most 25 nodes to optimality. To overcome this limitation, a preprocessing stage clustering nodes together is initially performed to yield a more compact cluster-based MILP problem formulation. In this way, a hierarchical hybrid procedure involving one heuristic and two algorithmic phases was developed. Phase I aims to identifying a set of cost-effective feasible clusters while Phase II assigns clusters to vehicles and sequences them on each tour by using the cluster-based MILP formulation. Ordering nodes within clusters and scheduling vehicle arrival times at customer locations for each tour through solving a small MILP model is finally performed at Phase III. Numerous benchmark problems featuring different sizes, clustered/random customer locations and time window distributions have been solved at acceptable CPU times.
publishDate 2007
dc.date.none.fl_str_mv 2007-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/25941
Dondo, Rodolfo Gabriel; Cerda, Jaime; A Cluster-based Optimization Approach for the Multi-depot Heterogeneous Fleet Vehicle Routing Problem with Time Windows; Elsevier Science; European Journal Of Operational Research; 176; 3; 12-2007; 1478-1507
0377-2217
CONICET Digital
CONICET
url http://hdl.handle.net/11336/25941
identifier_str_mv Dondo, Rodolfo Gabriel; Cerda, Jaime; A Cluster-based Optimization Approach for the Multi-depot Heterogeneous Fleet Vehicle Routing Problem with Time Windows; Elsevier Science; European Journal Of Operational Research; 176; 3; 12-2007; 1478-1507
0377-2217
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ejor.2004.07.077
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0377221705008672
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980799311249408
score 12.993085