Global smooth geodesic foliations of the hyperbolic space
- Autores
- Godoy, Yamile Alejandra; Salvai, Marcos Luis
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider foliations of the whole three dimensional hyperbolic space H3 by oriented geodesics. Let L be the space of all the oriented geodesics of H3, which is a four dimensional manifold carrying two canonical pseudo-Riemannian metrics of signature (2,2). We characterize, in terms of these geometries of L, the subsets M in L that determine foliations of H3. We describe in a similar way some distinguished types of geodesic foliations of H3, regarding to which extent they are in some sense trivial in some directions: On the one hand, foliations whose leaves do not lie in a totally geodesic surface, not even at the infinitesimal level. On the other hand, those for which the forward and backward Gauss maps (Formula presented.) are local diffeomorphisms. Besides, we prove that for this kind of foliations, φ± are global diffeomorphisms onto their images. The subject of this article is within the framework of foliations by congruent submanifolds, and follows the spirit of the paper by Gluck and Warner where they understand the infinite dimensional manifold of all the great circle foliations of the three sphere.
Fil: Godoy, Yamile Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
Geodesic Foliation
Hyperbolic Space
Space of Oriented Lines - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/51723
Ver los metadatos del registro completo
id |
CONICETDig_e6a9e92b5ff4a259d854947bd81e61c1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/51723 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Global smooth geodesic foliations of the hyperbolic spaceGodoy, Yamile AlejandraSalvai, Marcos LuisGeodesic FoliationHyperbolic SpaceSpace of Oriented Lineshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider foliations of the whole three dimensional hyperbolic space H3 by oriented geodesics. Let L be the space of all the oriented geodesics of H3, which is a four dimensional manifold carrying two canonical pseudo-Riemannian metrics of signature (2,2). We characterize, in terms of these geometries of L, the subsets M in L that determine foliations of H3. We describe in a similar way some distinguished types of geodesic foliations of H3, regarding to which extent they are in some sense trivial in some directions: On the one hand, foliations whose leaves do not lie in a totally geodesic surface, not even at the infinitesimal level. On the other hand, those for which the forward and backward Gauss maps (Formula presented.) are local diffeomorphisms. Besides, we prove that for this kind of foliations, φ± are global diffeomorphisms onto their images. The subject of this article is within the framework of foliations by congruent submanifolds, and follows the spirit of the paper by Gluck and Warner where they understand the infinite dimensional manifold of all the great circle foliations of the three sphere.Fil: Godoy, Yamile Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaSpringer2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/51723Godoy, Yamile Alejandra; Salvai, Marcos Luis; Global smooth geodesic foliations of the hyperbolic space; Springer; Mathematische Zeitschrift; 281; 1-2; 10-2015; 43-540025-58741432-1823CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00209-015-1474-zinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00209-015-1474-zinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:11Zoai:ri.conicet.gov.ar:11336/51723instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:11.436CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Global smooth geodesic foliations of the hyperbolic space |
title |
Global smooth geodesic foliations of the hyperbolic space |
spellingShingle |
Global smooth geodesic foliations of the hyperbolic space Godoy, Yamile Alejandra Geodesic Foliation Hyperbolic Space Space of Oriented Lines |
title_short |
Global smooth geodesic foliations of the hyperbolic space |
title_full |
Global smooth geodesic foliations of the hyperbolic space |
title_fullStr |
Global smooth geodesic foliations of the hyperbolic space |
title_full_unstemmed |
Global smooth geodesic foliations of the hyperbolic space |
title_sort |
Global smooth geodesic foliations of the hyperbolic space |
dc.creator.none.fl_str_mv |
Godoy, Yamile Alejandra Salvai, Marcos Luis |
author |
Godoy, Yamile Alejandra |
author_facet |
Godoy, Yamile Alejandra Salvai, Marcos Luis |
author_role |
author |
author2 |
Salvai, Marcos Luis |
author2_role |
author |
dc.subject.none.fl_str_mv |
Geodesic Foliation Hyperbolic Space Space of Oriented Lines |
topic |
Geodesic Foliation Hyperbolic Space Space of Oriented Lines |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider foliations of the whole three dimensional hyperbolic space H3 by oriented geodesics. Let L be the space of all the oriented geodesics of H3, which is a four dimensional manifold carrying two canonical pseudo-Riemannian metrics of signature (2,2). We characterize, in terms of these geometries of L, the subsets M in L that determine foliations of H3. We describe in a similar way some distinguished types of geodesic foliations of H3, regarding to which extent they are in some sense trivial in some directions: On the one hand, foliations whose leaves do not lie in a totally geodesic surface, not even at the infinitesimal level. On the other hand, those for which the forward and backward Gauss maps (Formula presented.) are local diffeomorphisms. Besides, we prove that for this kind of foliations, φ± are global diffeomorphisms onto their images. The subject of this article is within the framework of foliations by congruent submanifolds, and follows the spirit of the paper by Gluck and Warner where they understand the infinite dimensional manifold of all the great circle foliations of the three sphere. Fil: Godoy, Yamile Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
We consider foliations of the whole three dimensional hyperbolic space H3 by oriented geodesics. Let L be the space of all the oriented geodesics of H3, which is a four dimensional manifold carrying two canonical pseudo-Riemannian metrics of signature (2,2). We characterize, in terms of these geometries of L, the subsets M in L that determine foliations of H3. We describe in a similar way some distinguished types of geodesic foliations of H3, regarding to which extent they are in some sense trivial in some directions: On the one hand, foliations whose leaves do not lie in a totally geodesic surface, not even at the infinitesimal level. On the other hand, those for which the forward and backward Gauss maps (Formula presented.) are local diffeomorphisms. Besides, we prove that for this kind of foliations, φ± are global diffeomorphisms onto their images. The subject of this article is within the framework of foliations by congruent submanifolds, and follows the spirit of the paper by Gluck and Warner where they understand the infinite dimensional manifold of all the great circle foliations of the three sphere. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/51723 Godoy, Yamile Alejandra; Salvai, Marcos Luis; Global smooth geodesic foliations of the hyperbolic space; Springer; Mathematische Zeitschrift; 281; 1-2; 10-2015; 43-54 0025-5874 1432-1823 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/51723 |
identifier_str_mv |
Godoy, Yamile Alejandra; Salvai, Marcos Luis; Global smooth geodesic foliations of the hyperbolic space; Springer; Mathematische Zeitschrift; 281; 1-2; 10-2015; 43-54 0025-5874 1432-1823 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00209-015-1474-z info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00209-015-1474-z |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269018600243200 |
score |
13.13397 |