Change Detection in Point Clouds Using 3D Fractal Dimension
- Autores
- Casas Rosa, Juan C.; Navarro, Jose Pablo; Segura Sánchez, Rafael J.; Rueda Ruiz, Antonio J.; López Ruiz, Alfonso; Fuertes, José M.; Delrieux, Claudio Augusto; Ogayar Anguita, Carlos J.
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- : The management of large point clouds obtained by LiDAR sensors is an important topic in recent years due to the widespread use of this technology in a wide variety of applications and the increasing volume of data captured. One of the main applications of LIDAR systems is the study of the temporal evolution of the real environment. In open environments, it is important to know the evolution of erosive processes or landscape transformation. In the context of civil engineering and urban environments, it is useful for monitoring urban dynamics and growth, and changes during the construction of buildings or infrastructure facilities. The main problem with change detection (CD) methods is erroneous detection due to precision errors or the use of different capture devices at different times. This work presents a method to compare large point clouds, based on the study of the local fractal dimension of point clouds at multiple scales. Our method is robust in the presence of environmental and sensor factors that produce abnormal results with other methods. Furthermore, it is more stable than others in cases where there is no significant displacement of points but there is a local alteration of the structure of the point cloud. Furthermore, the precision can be adapted to the complexity and density of the point cloud. Finally, our solution is faster than other CD methods such as distance-based methods and can run at O(1) under some conditions, which is important when working with large datasets. All these improvements make the proposed method more suitable than the others to solve complex problems with LiDAR data, such as storage, time series data management, visualization, etc.
Fil: Casas Rosa, Juan C.. Universidad de Jaén; España
Fil: Navarro, Jose Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina
Fil: Segura Sánchez, Rafael J.. Universidad de Jaén; España
Fil: Rueda Ruiz, Antonio J.. Universidad de Jaén; España
Fil: López Ruiz, Alfonso. Universidad de Jaén; España
Fil: Fuertes, José M.. Universidad de Jaén; España
Fil: Delrieux, Claudio Augusto. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ogayar Anguita, Carlos J.. Universidad de Jaén; España - Materia
-
LiDAR
point cloud comparison
fractal dimension
box counting - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/235431
Ver los metadatos del registro completo
id |
CONICETDig_e7cf81df61bc600fc29b64946036660e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/235431 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Change Detection in Point Clouds Using 3D Fractal DimensionCasas Rosa, Juan C.Navarro, Jose PabloSegura Sánchez, Rafael J.Rueda Ruiz, Antonio J.López Ruiz, AlfonsoFuertes, José M.Delrieux, Claudio AugustoOgayar Anguita, Carlos J.LiDARpoint cloud comparisonfractal dimensionbox countinghttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1: The management of large point clouds obtained by LiDAR sensors is an important topic in recent years due to the widespread use of this technology in a wide variety of applications and the increasing volume of data captured. One of the main applications of LIDAR systems is the study of the temporal evolution of the real environment. In open environments, it is important to know the evolution of erosive processes or landscape transformation. In the context of civil engineering and urban environments, it is useful for monitoring urban dynamics and growth, and changes during the construction of buildings or infrastructure facilities. The main problem with change detection (CD) methods is erroneous detection due to precision errors or the use of different capture devices at different times. This work presents a method to compare large point clouds, based on the study of the local fractal dimension of point clouds at multiple scales. Our method is robust in the presence of environmental and sensor factors that produce abnormal results with other methods. Furthermore, it is more stable than others in cases where there is no significant displacement of points but there is a local alteration of the structure of the point cloud. Furthermore, the precision can be adapted to the complexity and density of the point cloud. Finally, our solution is faster than other CD methods such as distance-based methods and can run at O(1) under some conditions, which is important when working with large datasets. All these improvements make the proposed method more suitable than the others to solve complex problems with LiDAR data, such as storage, time series data management, visualization, etc.Fil: Casas Rosa, Juan C.. Universidad de Jaén; EspañaFil: Navarro, Jose Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; ArgentinaFil: Segura Sánchez, Rafael J.. Universidad de Jaén; EspañaFil: Rueda Ruiz, Antonio J.. Universidad de Jaén; EspañaFil: López Ruiz, Alfonso. Universidad de Jaén; EspañaFil: Fuertes, José M.. Universidad de Jaén; EspañaFil: Delrieux, Claudio Augusto. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ogayar Anguita, Carlos J.. Universidad de Jaén; EspañaMDPI2024-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/235431Casas Rosa, Juan C.; Navarro, Jose Pablo; Segura Sánchez, Rafael J.; Rueda Ruiz, Antonio J.; López Ruiz, Alfonso; et al.; Change Detection in Point Clouds Using 3D Fractal Dimension; MDPI; Remote Sensing; 16; 6; 3-2024; 1-182072-4292CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2072-4292/16/6/1054info:eu-repo/semantics/altIdentifier/doi/10.3390/rs16061054info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:10:50Zoai:ri.conicet.gov.ar:11336/235431instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:10:51.119CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Change Detection in Point Clouds Using 3D Fractal Dimension |
title |
Change Detection in Point Clouds Using 3D Fractal Dimension |
spellingShingle |
Change Detection in Point Clouds Using 3D Fractal Dimension Casas Rosa, Juan C. LiDAR point cloud comparison fractal dimension box counting |
title_short |
Change Detection in Point Clouds Using 3D Fractal Dimension |
title_full |
Change Detection in Point Clouds Using 3D Fractal Dimension |
title_fullStr |
Change Detection in Point Clouds Using 3D Fractal Dimension |
title_full_unstemmed |
Change Detection in Point Clouds Using 3D Fractal Dimension |
title_sort |
Change Detection in Point Clouds Using 3D Fractal Dimension |
dc.creator.none.fl_str_mv |
Casas Rosa, Juan C. Navarro, Jose Pablo Segura Sánchez, Rafael J. Rueda Ruiz, Antonio J. López Ruiz, Alfonso Fuertes, José M. Delrieux, Claudio Augusto Ogayar Anguita, Carlos J. |
author |
Casas Rosa, Juan C. |
author_facet |
Casas Rosa, Juan C. Navarro, Jose Pablo Segura Sánchez, Rafael J. Rueda Ruiz, Antonio J. López Ruiz, Alfonso Fuertes, José M. Delrieux, Claudio Augusto Ogayar Anguita, Carlos J. |
author_role |
author |
author2 |
Navarro, Jose Pablo Segura Sánchez, Rafael J. Rueda Ruiz, Antonio J. López Ruiz, Alfonso Fuertes, José M. Delrieux, Claudio Augusto Ogayar Anguita, Carlos J. |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
LiDAR point cloud comparison fractal dimension box counting |
topic |
LiDAR point cloud comparison fractal dimension box counting |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
: The management of large point clouds obtained by LiDAR sensors is an important topic in recent years due to the widespread use of this technology in a wide variety of applications and the increasing volume of data captured. One of the main applications of LIDAR systems is the study of the temporal evolution of the real environment. In open environments, it is important to know the evolution of erosive processes or landscape transformation. In the context of civil engineering and urban environments, it is useful for monitoring urban dynamics and growth, and changes during the construction of buildings or infrastructure facilities. The main problem with change detection (CD) methods is erroneous detection due to precision errors or the use of different capture devices at different times. This work presents a method to compare large point clouds, based on the study of the local fractal dimension of point clouds at multiple scales. Our method is robust in the presence of environmental and sensor factors that produce abnormal results with other methods. Furthermore, it is more stable than others in cases where there is no significant displacement of points but there is a local alteration of the structure of the point cloud. Furthermore, the precision can be adapted to the complexity and density of the point cloud. Finally, our solution is faster than other CD methods such as distance-based methods and can run at O(1) under some conditions, which is important when working with large datasets. All these improvements make the proposed method more suitable than the others to solve complex problems with LiDAR data, such as storage, time series data management, visualization, etc. Fil: Casas Rosa, Juan C.. Universidad de Jaén; España Fil: Navarro, Jose Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina Fil: Segura Sánchez, Rafael J.. Universidad de Jaén; España Fil: Rueda Ruiz, Antonio J.. Universidad de Jaén; España Fil: López Ruiz, Alfonso. Universidad de Jaén; España Fil: Fuertes, José M.. Universidad de Jaén; España Fil: Delrieux, Claudio Augusto. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Ogayar Anguita, Carlos J.. Universidad de Jaén; España |
description |
: The management of large point clouds obtained by LiDAR sensors is an important topic in recent years due to the widespread use of this technology in a wide variety of applications and the increasing volume of data captured. One of the main applications of LIDAR systems is the study of the temporal evolution of the real environment. In open environments, it is important to know the evolution of erosive processes or landscape transformation. In the context of civil engineering and urban environments, it is useful for monitoring urban dynamics and growth, and changes during the construction of buildings or infrastructure facilities. The main problem with change detection (CD) methods is erroneous detection due to precision errors or the use of different capture devices at different times. This work presents a method to compare large point clouds, based on the study of the local fractal dimension of point clouds at multiple scales. Our method is robust in the presence of environmental and sensor factors that produce abnormal results with other methods. Furthermore, it is more stable than others in cases where there is no significant displacement of points but there is a local alteration of the structure of the point cloud. Furthermore, the precision can be adapted to the complexity and density of the point cloud. Finally, our solution is faster than other CD methods such as distance-based methods and can run at O(1) under some conditions, which is important when working with large datasets. All these improvements make the proposed method more suitable than the others to solve complex problems with LiDAR data, such as storage, time series data management, visualization, etc. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/235431 Casas Rosa, Juan C.; Navarro, Jose Pablo; Segura Sánchez, Rafael J.; Rueda Ruiz, Antonio J.; López Ruiz, Alfonso; et al.; Change Detection in Point Clouds Using 3D Fractal Dimension; MDPI; Remote Sensing; 16; 6; 3-2024; 1-18 2072-4292 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/235431 |
identifier_str_mv |
Casas Rosa, Juan C.; Navarro, Jose Pablo; Segura Sánchez, Rafael J.; Rueda Ruiz, Antonio J.; López Ruiz, Alfonso; et al.; Change Detection in Point Clouds Using 3D Fractal Dimension; MDPI; Remote Sensing; 16; 6; 3-2024; 1-18 2072-4292 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2072-4292/16/6/1054 info:eu-repo/semantics/altIdentifier/doi/10.3390/rs16061054 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980549859213312 |
score |
12.993085 |