Box Counting Dimension of Red Blood Cells Samples when Filtered with Wavelet Transform
- Autores
- Korol, Ana María; Leguto, Alcides José; Rebechi, Juan Pablo; Riquelme, Bibiana Doris; Ponce De León, Patricia; Bortolato, Santiago Andres; Mancilla Canales, Manuel Arturo
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Automatic recognizing of different populations of several millions of red blood cells (RBCs) is a useful tool in Hematology and Clinical Diagnosis. In this work we studied samples of several millions of RBCs: on one hand healthy control RBCs and on the other hand control RBCs incubated with Trichinella spiralis larval parasites. The alteration on the cells membrane with the parasite can be studied with box-counting dimension on both samples. Previously we applied wavelet transform to all the samples in order to improve the results. The procedure to remove noise from an image is based on the decomposition of the observed signal in a set of wavelets and taking threshold values to select the appropriate coefficients through which the signal can be reconstructed. In our work we compared the results obtained when analyzing the raw signals and the ones obtained after applying wavelet transform, and the results were different and more clearly characterized when the signal were treated with wavelet transform. Finally, the present method using wavelet transform is suitable to optimize the characterization of the RBCs damage when incubated with the larval parasites.
Fil: Korol, Ana María. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina
Fil: Leguto, Alcides José. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rebechi, Juan Pablo. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina
Fil: Riquelme, Bibiana Doris. Universidad Nacional de Rosario. Fundación para el Apoyo de las Ciencias Físicas de Rosario; Argentina
Fil: Ponce De León, Patricia. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina
Fil: Bortolato, Santiago Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
Fil: Mancilla Canales, Manuel Arturo. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Box counting dimension
Wavelet Transform
Red blood cells
Trichinella spiralis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/63884
Ver los metadatos del registro completo
| id |
CONICETDig_ba6ca4056eaf4c658e680f447be04ca0 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/63884 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Box Counting Dimension of Red Blood Cells Samples when Filtered with Wavelet TransformKorol, Ana MaríaLeguto, Alcides JoséRebechi, Juan PabloRiquelme, Bibiana DorisPonce De León, PatriciaBortolato, Santiago AndresMancilla Canales, Manuel ArturoBox counting dimensionWavelet TransformRed blood cellsTrichinella spiralishttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Automatic recognizing of different populations of several millions of red blood cells (RBCs) is a useful tool in Hematology and Clinical Diagnosis. In this work we studied samples of several millions of RBCs: on one hand healthy control RBCs and on the other hand control RBCs incubated with Trichinella spiralis larval parasites. The alteration on the cells membrane with the parasite can be studied with box-counting dimension on both samples. Previously we applied wavelet transform to all the samples in order to improve the results. The procedure to remove noise from an image is based on the decomposition of the observed signal in a set of wavelets and taking threshold values to select the appropriate coefficients through which the signal can be reconstructed. In our work we compared the results obtained when analyzing the raw signals and the ones obtained after applying wavelet transform, and the results were different and more clearly characterized when the signal were treated with wavelet transform. Finally, the present method using wavelet transform is suitable to optimize the characterization of the RBCs damage when incubated with the larval parasites.Fil: Korol, Ana María. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; ArgentinaFil: Leguto, Alcides José. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rebechi, Juan Pablo. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; ArgentinaFil: Riquelme, Bibiana Doris. Universidad Nacional de Rosario. Fundación para el Apoyo de las Ciencias Físicas de Rosario; ArgentinaFil: Ponce De León, Patricia. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; ArgentinaFil: Bortolato, Santiago Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Mancilla Canales, Manuel Arturo. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAsociación Argentina de Mecánica Computacional2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/63884Korol, Ana María; Leguto, Alcides José; Rebechi, Juan Pablo; Riquelme, Bibiana Doris; Ponce De León, Patricia; et al.; Box Counting Dimension of Red Blood Cells Samples when Filtered with Wavelet Transform ; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; XXXV; 43; 11-2017; 2533-25382591-3522CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5467info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T12:52:09Zoai:ri.conicet.gov.ar:11336/63884instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 12:52:09.548CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Box Counting Dimension of Red Blood Cells Samples when Filtered with Wavelet Transform |
| title |
Box Counting Dimension of Red Blood Cells Samples when Filtered with Wavelet Transform |
| spellingShingle |
Box Counting Dimension of Red Blood Cells Samples when Filtered with Wavelet Transform Korol, Ana María Box counting dimension Wavelet Transform Red blood cells Trichinella spiralis |
| title_short |
Box Counting Dimension of Red Blood Cells Samples when Filtered with Wavelet Transform |
| title_full |
Box Counting Dimension of Red Blood Cells Samples when Filtered with Wavelet Transform |
| title_fullStr |
Box Counting Dimension of Red Blood Cells Samples when Filtered with Wavelet Transform |
| title_full_unstemmed |
Box Counting Dimension of Red Blood Cells Samples when Filtered with Wavelet Transform |
| title_sort |
Box Counting Dimension of Red Blood Cells Samples when Filtered with Wavelet Transform |
| dc.creator.none.fl_str_mv |
Korol, Ana María Leguto, Alcides José Rebechi, Juan Pablo Riquelme, Bibiana Doris Ponce De León, Patricia Bortolato, Santiago Andres Mancilla Canales, Manuel Arturo |
| author |
Korol, Ana María |
| author_facet |
Korol, Ana María Leguto, Alcides José Rebechi, Juan Pablo Riquelme, Bibiana Doris Ponce De León, Patricia Bortolato, Santiago Andres Mancilla Canales, Manuel Arturo |
| author_role |
author |
| author2 |
Leguto, Alcides José Rebechi, Juan Pablo Riquelme, Bibiana Doris Ponce De León, Patricia Bortolato, Santiago Andres Mancilla Canales, Manuel Arturo |
| author2_role |
author author author author author author |
| dc.subject.none.fl_str_mv |
Box counting dimension Wavelet Transform Red blood cells Trichinella spiralis |
| topic |
Box counting dimension Wavelet Transform Red blood cells Trichinella spiralis |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Automatic recognizing of different populations of several millions of red blood cells (RBCs) is a useful tool in Hematology and Clinical Diagnosis. In this work we studied samples of several millions of RBCs: on one hand healthy control RBCs and on the other hand control RBCs incubated with Trichinella spiralis larval parasites. The alteration on the cells membrane with the parasite can be studied with box-counting dimension on both samples. Previously we applied wavelet transform to all the samples in order to improve the results. The procedure to remove noise from an image is based on the decomposition of the observed signal in a set of wavelets and taking threshold values to select the appropriate coefficients through which the signal can be reconstructed. In our work we compared the results obtained when analyzing the raw signals and the ones obtained after applying wavelet transform, and the results were different and more clearly characterized when the signal were treated with wavelet transform. Finally, the present method using wavelet transform is suitable to optimize the characterization of the RBCs damage when incubated with the larval parasites. Fil: Korol, Ana María. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina Fil: Leguto, Alcides José. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Rebechi, Juan Pablo. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina Fil: Riquelme, Bibiana Doris. Universidad Nacional de Rosario. Fundación para el Apoyo de las Ciencias Físicas de Rosario; Argentina Fil: Ponce De León, Patricia. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina Fil: Bortolato, Santiago Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina Fil: Mancilla Canales, Manuel Arturo. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
Automatic recognizing of different populations of several millions of red blood cells (RBCs) is a useful tool in Hematology and Clinical Diagnosis. In this work we studied samples of several millions of RBCs: on one hand healthy control RBCs and on the other hand control RBCs incubated with Trichinella spiralis larval parasites. The alteration on the cells membrane with the parasite can be studied with box-counting dimension on both samples. Previously we applied wavelet transform to all the samples in order to improve the results. The procedure to remove noise from an image is based on the decomposition of the observed signal in a set of wavelets and taking threshold values to select the appropriate coefficients through which the signal can be reconstructed. In our work we compared the results obtained when analyzing the raw signals and the ones obtained after applying wavelet transform, and the results were different and more clearly characterized when the signal were treated with wavelet transform. Finally, the present method using wavelet transform is suitable to optimize the characterization of the RBCs damage when incubated with the larval parasites. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-11 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/63884 Korol, Ana María; Leguto, Alcides José; Rebechi, Juan Pablo; Riquelme, Bibiana Doris; Ponce De León, Patricia; et al.; Box Counting Dimension of Red Blood Cells Samples when Filtered with Wavelet Transform ; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; XXXV; 43; 11-2017; 2533-2538 2591-3522 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/63884 |
| identifier_str_mv |
Korol, Ana María; Leguto, Alcides José; Rebechi, Juan Pablo; Riquelme, Bibiana Doris; Ponce De León, Patricia; et al.; Box Counting Dimension of Red Blood Cells Samples when Filtered with Wavelet Transform ; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; XXXV; 43; 11-2017; 2533-2538 2591-3522 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5467 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Asociación Argentina de Mecánica Computacional |
| publisher.none.fl_str_mv |
Asociación Argentina de Mecánica Computacional |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847427607240376320 |
| score |
13.10058 |