N-terminal region is responsible for mHv1 channel activity in MDSCs
- Autores
- Peña Pichicoi, Antonio; Fernández, Miguel; Navarro Quezada, Nieves; Alvear Arias, Juan José; Carrillo, Christian A.; Carmona, Emerson M.; Gárate, José Antonio; Lopez Rodriguez, Angelica M.; Neely, Alan; Hernández Ochoa, Erick O.; González, Carlos
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Voltage-gated proton channels (Hv1) are important regulators of the immunosuppressive function of myeloid-derived suppressor cells (MDSCs) in mice and have been proposed as a potential therapeutic target to alleviate dysregulated immunosuppression in tumors. However, till date, there is a lack of evidence regarding the functioning of the Hvcn1 and reports on mHv1 isoform diversity in mice and MDSCs. A computational prediction has suggested that the Hvcn1 gene may express up to six transcript variants, three of which are translated into distinct N-terminal isoforms of mHv1: mHv1.1 (269 aa), mHv1.2 (269 + 42 aa), and mHv1.3 (269 + 4 aa). To validate this prediction, we used RT-PCR on total RNA extracted from MDSCs, and the presence of all six predicted mRNA variances was confirmed. Subsequently, the open-reading frames (ORFs) encoding for mHv1 isoforms were cloned and expressed in Xenopus laevis oocytes for proton current recording using a macro-patch voltage clamp. Our findings reveal that all three isoforms are mammalian mHv1 channels, with distinct differences in their activation properties. Specifically, the longest isoform, mHv1.2, displays a right-shifted conductance–voltage (GV) curve and slower opening kinetics, compared to the mid-length isoform, mHv1.3, and the shortest canonical isoform, mHv1.1. While mHv1.3 exhibits a V0.5 similar to that of mHv1.1, mHv1.3 demonstrates significantly slower activation kinetics than mHv1.1. These results suggest that isoform gating efficiency is inversely related to the length of the N-terminal end. To further explore this, we created the truncated mHv1.2 ΔN20 construct by removing the first 20 amino acids from the N-terminus of mHv1.2. This construct displayed intermediate activation properties, with a V0.5 value lying intermediate of mHv1.1 and mHv1.2, and activation kinetics that were faster than that of mHv1.2 but slower than that of mHv1.1. Overall, these findings indicate that alternative splicing of the N-terminal exon in mRNA transcripts encoding mHv1 isoforms is a regulatory mechanism for mHv1 function within MDSCs. While MDSCs have the capability to translate multiple Hv1 isoforms with varying gating properties, the Hvcn1 gene promotes the dominant expression of mHv1.1, which exhibits the most efficient gating among all mHv1 isoforms.
Fil: Peña Pichicoi, Antonio. Universidad de Valparaíso; Chile
Fil: Fernández, Miguel. Universidad de Valparaíso; Chile
Fil: Navarro Quezada, Nieves. Universidad de Valparaíso; Chile
Fil: Alvear Arias, Juan José. Universidad de Valparaíso; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina
Fil: Carrillo, Christian A.. Universidad de Valparaíso; Chile
Fil: Carmona, Emerson M.. Texas Tech University Health Sciences Center; Estados Unidos
Fil: Gárate, José Antonio. Universidad de Valparaíso; Chile. Universidad San Sebastián; Chile
Fil: Lopez Rodriguez, Angelica M.. Universidad Juárez del Estado de Durango; México
Fil: Neely, Alan. Universidad de Valparaíso; Chile
Fil: Hernández Ochoa, Erick O.. University of Maryland; Estados Unidos
Fil: González, Carlos. Universidad de Valparaíso; Chile. University of Miami; Estados Unidos - Materia
-
CLONING
IMMUNOSUPPRESSION
MHV1.1
MHV1.2
MHV1.3
MYELOID-DERIVED SUPPRESSOR CELLS
VOLTAGE-GATED PROTON CHANNEL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/228408
Ver los metadatos del registro completo
id |
CONICETDig_e6e632e4fdfe08479f0cb413d5b51438 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/228408 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
N-terminal region is responsible for mHv1 channel activity in MDSCsPeña Pichicoi, AntonioFernández, MiguelNavarro Quezada, NievesAlvear Arias, Juan JoséCarrillo, Christian A.Carmona, Emerson M.Gárate, José AntonioLopez Rodriguez, Angelica M.Neely, AlanHernández Ochoa, Erick O.González, CarlosCLONINGIMMUNOSUPPRESSIONMHV1.1MHV1.2MHV1.3MYELOID-DERIVED SUPPRESSOR CELLSVOLTAGE-GATED PROTON CHANNELhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Voltage-gated proton channels (Hv1) are important regulators of the immunosuppressive function of myeloid-derived suppressor cells (MDSCs) in mice and have been proposed as a potential therapeutic target to alleviate dysregulated immunosuppression in tumors. However, till date, there is a lack of evidence regarding the functioning of the Hvcn1 and reports on mHv1 isoform diversity in mice and MDSCs. A computational prediction has suggested that the Hvcn1 gene may express up to six transcript variants, three of which are translated into distinct N-terminal isoforms of mHv1: mHv1.1 (269 aa), mHv1.2 (269 + 42 aa), and mHv1.3 (269 + 4 aa). To validate this prediction, we used RT-PCR on total RNA extracted from MDSCs, and the presence of all six predicted mRNA variances was confirmed. Subsequently, the open-reading frames (ORFs) encoding for mHv1 isoforms were cloned and expressed in Xenopus laevis oocytes for proton current recording using a macro-patch voltage clamp. Our findings reveal that all three isoforms are mammalian mHv1 channels, with distinct differences in their activation properties. Specifically, the longest isoform, mHv1.2, displays a right-shifted conductance–voltage (GV) curve and slower opening kinetics, compared to the mid-length isoform, mHv1.3, and the shortest canonical isoform, mHv1.1. While mHv1.3 exhibits a V0.5 similar to that of mHv1.1, mHv1.3 demonstrates significantly slower activation kinetics than mHv1.1. These results suggest that isoform gating efficiency is inversely related to the length of the N-terminal end. To further explore this, we created the truncated mHv1.2 ΔN20 construct by removing the first 20 amino acids from the N-terminus of mHv1.2. This construct displayed intermediate activation properties, with a V0.5 value lying intermediate of mHv1.1 and mHv1.2, and activation kinetics that were faster than that of mHv1.2 but slower than that of mHv1.1. Overall, these findings indicate that alternative splicing of the N-terminal exon in mRNA transcripts encoding mHv1 isoforms is a regulatory mechanism for mHv1 function within MDSCs. While MDSCs have the capability to translate multiple Hv1 isoforms with varying gating properties, the Hvcn1 gene promotes the dominant expression of mHv1.1, which exhibits the most efficient gating among all mHv1 isoforms.Fil: Peña Pichicoi, Antonio. Universidad de Valparaíso; ChileFil: Fernández, Miguel. Universidad de Valparaíso; ChileFil: Navarro Quezada, Nieves. Universidad de Valparaíso; ChileFil: Alvear Arias, Juan José. Universidad de Valparaíso; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaFil: Carrillo, Christian A.. Universidad de Valparaíso; ChileFil: Carmona, Emerson M.. Texas Tech University Health Sciences Center; Estados UnidosFil: Gárate, José Antonio. Universidad de Valparaíso; Chile. Universidad San Sebastián; ChileFil: Lopez Rodriguez, Angelica M.. Universidad Juárez del Estado de Durango; MéxicoFil: Neely, Alan. Universidad de Valparaíso; ChileFil: Hernández Ochoa, Erick O.. University of Maryland; Estados UnidosFil: González, Carlos. Universidad de Valparaíso; Chile. University of Miami; Estados UnidosFrontiers Media2023-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/228408Peña Pichicoi, Antonio; Fernández, Miguel; Navarro Quezada, Nieves; Alvear Arias, Juan José; Carrillo, Christian A.; et al.; N-terminal region is responsible for mHv1 channel activity in MDSCs; Frontiers Media; Frontiers in Pharmacology; 14; 1265130; 10-2023; 1-141663-9812CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2023.1265130/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fphar.2023.1265130info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:49:58Zoai:ri.conicet.gov.ar:11336/228408instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:49:58.921CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
N-terminal region is responsible for mHv1 channel activity in MDSCs |
title |
N-terminal region is responsible for mHv1 channel activity in MDSCs |
spellingShingle |
N-terminal region is responsible for mHv1 channel activity in MDSCs Peña Pichicoi, Antonio CLONING IMMUNOSUPPRESSION MHV1.1 MHV1.2 MHV1.3 MYELOID-DERIVED SUPPRESSOR CELLS VOLTAGE-GATED PROTON CHANNEL |
title_short |
N-terminal region is responsible for mHv1 channel activity in MDSCs |
title_full |
N-terminal region is responsible for mHv1 channel activity in MDSCs |
title_fullStr |
N-terminal region is responsible for mHv1 channel activity in MDSCs |
title_full_unstemmed |
N-terminal region is responsible for mHv1 channel activity in MDSCs |
title_sort |
N-terminal region is responsible for mHv1 channel activity in MDSCs |
dc.creator.none.fl_str_mv |
Peña Pichicoi, Antonio Fernández, Miguel Navarro Quezada, Nieves Alvear Arias, Juan José Carrillo, Christian A. Carmona, Emerson M. Gárate, José Antonio Lopez Rodriguez, Angelica M. Neely, Alan Hernández Ochoa, Erick O. González, Carlos |
author |
Peña Pichicoi, Antonio |
author_facet |
Peña Pichicoi, Antonio Fernández, Miguel Navarro Quezada, Nieves Alvear Arias, Juan José Carrillo, Christian A. Carmona, Emerson M. Gárate, José Antonio Lopez Rodriguez, Angelica M. Neely, Alan Hernández Ochoa, Erick O. González, Carlos |
author_role |
author |
author2 |
Fernández, Miguel Navarro Quezada, Nieves Alvear Arias, Juan José Carrillo, Christian A. Carmona, Emerson M. Gárate, José Antonio Lopez Rodriguez, Angelica M. Neely, Alan Hernández Ochoa, Erick O. González, Carlos |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
CLONING IMMUNOSUPPRESSION MHV1.1 MHV1.2 MHV1.3 MYELOID-DERIVED SUPPRESSOR CELLS VOLTAGE-GATED PROTON CHANNEL |
topic |
CLONING IMMUNOSUPPRESSION MHV1.1 MHV1.2 MHV1.3 MYELOID-DERIVED SUPPRESSOR CELLS VOLTAGE-GATED PROTON CHANNEL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Voltage-gated proton channels (Hv1) are important regulators of the immunosuppressive function of myeloid-derived suppressor cells (MDSCs) in mice and have been proposed as a potential therapeutic target to alleviate dysregulated immunosuppression in tumors. However, till date, there is a lack of evidence regarding the functioning of the Hvcn1 and reports on mHv1 isoform diversity in mice and MDSCs. A computational prediction has suggested that the Hvcn1 gene may express up to six transcript variants, three of which are translated into distinct N-terminal isoforms of mHv1: mHv1.1 (269 aa), mHv1.2 (269 + 42 aa), and mHv1.3 (269 + 4 aa). To validate this prediction, we used RT-PCR on total RNA extracted from MDSCs, and the presence of all six predicted mRNA variances was confirmed. Subsequently, the open-reading frames (ORFs) encoding for mHv1 isoforms were cloned and expressed in Xenopus laevis oocytes for proton current recording using a macro-patch voltage clamp. Our findings reveal that all three isoforms are mammalian mHv1 channels, with distinct differences in their activation properties. Specifically, the longest isoform, mHv1.2, displays a right-shifted conductance–voltage (GV) curve and slower opening kinetics, compared to the mid-length isoform, mHv1.3, and the shortest canonical isoform, mHv1.1. While mHv1.3 exhibits a V0.5 similar to that of mHv1.1, mHv1.3 demonstrates significantly slower activation kinetics than mHv1.1. These results suggest that isoform gating efficiency is inversely related to the length of the N-terminal end. To further explore this, we created the truncated mHv1.2 ΔN20 construct by removing the first 20 amino acids from the N-terminus of mHv1.2. This construct displayed intermediate activation properties, with a V0.5 value lying intermediate of mHv1.1 and mHv1.2, and activation kinetics that were faster than that of mHv1.2 but slower than that of mHv1.1. Overall, these findings indicate that alternative splicing of the N-terminal exon in mRNA transcripts encoding mHv1 isoforms is a regulatory mechanism for mHv1 function within MDSCs. While MDSCs have the capability to translate multiple Hv1 isoforms with varying gating properties, the Hvcn1 gene promotes the dominant expression of mHv1.1, which exhibits the most efficient gating among all mHv1 isoforms. Fil: Peña Pichicoi, Antonio. Universidad de Valparaíso; Chile Fil: Fernández, Miguel. Universidad de Valparaíso; Chile Fil: Navarro Quezada, Nieves. Universidad de Valparaíso; Chile Fil: Alvear Arias, Juan José. Universidad de Valparaíso; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina Fil: Carrillo, Christian A.. Universidad de Valparaíso; Chile Fil: Carmona, Emerson M.. Texas Tech University Health Sciences Center; Estados Unidos Fil: Gárate, José Antonio. Universidad de Valparaíso; Chile. Universidad San Sebastián; Chile Fil: Lopez Rodriguez, Angelica M.. Universidad Juárez del Estado de Durango; México Fil: Neely, Alan. Universidad de Valparaíso; Chile Fil: Hernández Ochoa, Erick O.. University of Maryland; Estados Unidos Fil: González, Carlos. Universidad de Valparaíso; Chile. University of Miami; Estados Unidos |
description |
Voltage-gated proton channels (Hv1) are important regulators of the immunosuppressive function of myeloid-derived suppressor cells (MDSCs) in mice and have been proposed as a potential therapeutic target to alleviate dysregulated immunosuppression in tumors. However, till date, there is a lack of evidence regarding the functioning of the Hvcn1 and reports on mHv1 isoform diversity in mice and MDSCs. A computational prediction has suggested that the Hvcn1 gene may express up to six transcript variants, three of which are translated into distinct N-terminal isoforms of mHv1: mHv1.1 (269 aa), mHv1.2 (269 + 42 aa), and mHv1.3 (269 + 4 aa). To validate this prediction, we used RT-PCR on total RNA extracted from MDSCs, and the presence of all six predicted mRNA variances was confirmed. Subsequently, the open-reading frames (ORFs) encoding for mHv1 isoforms were cloned and expressed in Xenopus laevis oocytes for proton current recording using a macro-patch voltage clamp. Our findings reveal that all three isoforms are mammalian mHv1 channels, with distinct differences in their activation properties. Specifically, the longest isoform, mHv1.2, displays a right-shifted conductance–voltage (GV) curve and slower opening kinetics, compared to the mid-length isoform, mHv1.3, and the shortest canonical isoform, mHv1.1. While mHv1.3 exhibits a V0.5 similar to that of mHv1.1, mHv1.3 demonstrates significantly slower activation kinetics than mHv1.1. These results suggest that isoform gating efficiency is inversely related to the length of the N-terminal end. To further explore this, we created the truncated mHv1.2 ΔN20 construct by removing the first 20 amino acids from the N-terminus of mHv1.2. This construct displayed intermediate activation properties, with a V0.5 value lying intermediate of mHv1.1 and mHv1.2, and activation kinetics that were faster than that of mHv1.2 but slower than that of mHv1.1. Overall, these findings indicate that alternative splicing of the N-terminal exon in mRNA transcripts encoding mHv1 isoforms is a regulatory mechanism for mHv1 function within MDSCs. While MDSCs have the capability to translate multiple Hv1 isoforms with varying gating properties, the Hvcn1 gene promotes the dominant expression of mHv1.1, which exhibits the most efficient gating among all mHv1 isoforms. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/228408 Peña Pichicoi, Antonio; Fernández, Miguel; Navarro Quezada, Nieves; Alvear Arias, Juan José; Carrillo, Christian A.; et al.; N-terminal region is responsible for mHv1 channel activity in MDSCs; Frontiers Media; Frontiers in Pharmacology; 14; 1265130; 10-2023; 1-14 1663-9812 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/228408 |
identifier_str_mv |
Peña Pichicoi, Antonio; Fernández, Miguel; Navarro Quezada, Nieves; Alvear Arias, Juan José; Carrillo, Christian A.; et al.; N-terminal region is responsible for mHv1 channel activity in MDSCs; Frontiers Media; Frontiers in Pharmacology; 14; 1265130; 10-2023; 1-14 1663-9812 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2023.1265130/full info:eu-repo/semantics/altIdentifier/doi/10.3389/fphar.2023.1265130 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Media |
publisher.none.fl_str_mv |
Frontiers Media |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613542933692416 |
score |
13.070432 |