N-terminal region is responsible for mHv1 channel activity in MDSCs

Autores
Peña Pichicoi, Antonio; Fernández, Miguel; Navarro Quezada, Nieves; Alvear Arias, Juan José; Carrillo, Christian A.; Carmona, Emerson M.; Gárate, José Antonio; Lopez Rodriguez, Angelica M.; Neely, Alan; Hernández Ochoa, Erick O.; González, Carlos
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Voltage-gated proton channels (Hv1) are important regulators of the immunosuppressive function of myeloid-derived suppressor cells (MDSCs) in mice and have been proposed as a potential therapeutic target to alleviate dysregulated immunosuppression in tumors. However, till date, there is a lack of evidence regarding the functioning of the Hvcn1 and reports on mHv1 isoform diversity in mice and MDSCs. A computational prediction has suggested that the Hvcn1 gene may express up to six transcript variants, three of which are translated into distinct N-terminal isoforms of mHv1: mHv1.1 (269 aa), mHv1.2 (269 + 42 aa), and mHv1.3 (269 + 4 aa). To validate this prediction, we used RT-PCR on total RNA extracted from MDSCs, and the presence of all six predicted mRNA variances was confirmed. Subsequently, the open-reading frames (ORFs) encoding for mHv1 isoforms were cloned and expressed in Xenopus laevis oocytes for proton current recording using a macro-patch voltage clamp. Our findings reveal that all three isoforms are mammalian mHv1 channels, with distinct differences in their activation properties. Specifically, the longest isoform, mHv1.2, displays a right-shifted conductance–voltage (GV) curve and slower opening kinetics, compared to the mid-length isoform, mHv1.3, and the shortest canonical isoform, mHv1.1. While mHv1.3 exhibits a V0.5 similar to that of mHv1.1, mHv1.3 demonstrates significantly slower activation kinetics than mHv1.1. These results suggest that isoform gating efficiency is inversely related to the length of the N-terminal end. To further explore this, we created the truncated mHv1.2 ΔN20 construct by removing the first 20 amino acids from the N-terminus of mHv1.2. This construct displayed intermediate activation properties, with a V0.5 value lying intermediate of mHv1.1 and mHv1.2, and activation kinetics that were faster than that of mHv1.2 but slower than that of mHv1.1. Overall, these findings indicate that alternative splicing of the N-terminal exon in mRNA transcripts encoding mHv1 isoforms is a regulatory mechanism for mHv1 function within MDSCs. While MDSCs have the capability to translate multiple Hv1 isoforms with varying gating properties, the Hvcn1 gene promotes the dominant expression of mHv1.1, which exhibits the most efficient gating among all mHv1 isoforms.
Fil: Peña Pichicoi, Antonio. Universidad de Valparaíso; Chile
Fil: Fernández, Miguel. Universidad de Valparaíso; Chile
Fil: Navarro Quezada, Nieves. Universidad de Valparaíso; Chile
Fil: Alvear Arias, Juan José. Universidad de Valparaíso; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina
Fil: Carrillo, Christian A.. Universidad de Valparaíso; Chile
Fil: Carmona, Emerson M.. Texas Tech University Health Sciences Center; Estados Unidos
Fil: Gárate, José Antonio. Universidad de Valparaíso; Chile. Universidad San Sebastián; Chile
Fil: Lopez Rodriguez, Angelica M.. Universidad Juárez del Estado de Durango; México
Fil: Neely, Alan. Universidad de Valparaíso; Chile
Fil: Hernández Ochoa, Erick O.. University of Maryland; Estados Unidos
Fil: González, Carlos. Universidad de Valparaíso; Chile. University of Miami; Estados Unidos
Materia
CLONING
IMMUNOSUPPRESSION
MHV1.1
MHV1.2
MHV1.3
MYELOID-DERIVED SUPPRESSOR CELLS
VOLTAGE-GATED PROTON CHANNEL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/228408

id CONICETDig_e6e632e4fdfe08479f0cb413d5b51438
oai_identifier_str oai:ri.conicet.gov.ar:11336/228408
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling N-terminal region is responsible for mHv1 channel activity in MDSCsPeña Pichicoi, AntonioFernández, MiguelNavarro Quezada, NievesAlvear Arias, Juan JoséCarrillo, Christian A.Carmona, Emerson M.Gárate, José AntonioLopez Rodriguez, Angelica M.Neely, AlanHernández Ochoa, Erick O.González, CarlosCLONINGIMMUNOSUPPRESSIONMHV1.1MHV1.2MHV1.3MYELOID-DERIVED SUPPRESSOR CELLSVOLTAGE-GATED PROTON CHANNELhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Voltage-gated proton channels (Hv1) are important regulators of the immunosuppressive function of myeloid-derived suppressor cells (MDSCs) in mice and have been proposed as a potential therapeutic target to alleviate dysregulated immunosuppression in tumors. However, till date, there is a lack of evidence regarding the functioning of the Hvcn1 and reports on mHv1 isoform diversity in mice and MDSCs. A computational prediction has suggested that the Hvcn1 gene may express up to six transcript variants, three of which are translated into distinct N-terminal isoforms of mHv1: mHv1.1 (269 aa), mHv1.2 (269 + 42 aa), and mHv1.3 (269 + 4 aa). To validate this prediction, we used RT-PCR on total RNA extracted from MDSCs, and the presence of all six predicted mRNA variances was confirmed. Subsequently, the open-reading frames (ORFs) encoding for mHv1 isoforms were cloned and expressed in Xenopus laevis oocytes for proton current recording using a macro-patch voltage clamp. Our findings reveal that all three isoforms are mammalian mHv1 channels, with distinct differences in their activation properties. Specifically, the longest isoform, mHv1.2, displays a right-shifted conductance–voltage (GV) curve and slower opening kinetics, compared to the mid-length isoform, mHv1.3, and the shortest canonical isoform, mHv1.1. While mHv1.3 exhibits a V0.5 similar to that of mHv1.1, mHv1.3 demonstrates significantly slower activation kinetics than mHv1.1. These results suggest that isoform gating efficiency is inversely related to the length of the N-terminal end. To further explore this, we created the truncated mHv1.2 ΔN20 construct by removing the first 20 amino acids from the N-terminus of mHv1.2. This construct displayed intermediate activation properties, with a V0.5 value lying intermediate of mHv1.1 and mHv1.2, and activation kinetics that were faster than that of mHv1.2 but slower than that of mHv1.1. Overall, these findings indicate that alternative splicing of the N-terminal exon in mRNA transcripts encoding mHv1 isoforms is a regulatory mechanism for mHv1 function within MDSCs. While MDSCs have the capability to translate multiple Hv1 isoforms with varying gating properties, the Hvcn1 gene promotes the dominant expression of mHv1.1, which exhibits the most efficient gating among all mHv1 isoforms.Fil: Peña Pichicoi, Antonio. Universidad de Valparaíso; ChileFil: Fernández, Miguel. Universidad de Valparaíso; ChileFil: Navarro Quezada, Nieves. Universidad de Valparaíso; ChileFil: Alvear Arias, Juan José. Universidad de Valparaíso; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaFil: Carrillo, Christian A.. Universidad de Valparaíso; ChileFil: Carmona, Emerson M.. Texas Tech University Health Sciences Center; Estados UnidosFil: Gárate, José Antonio. Universidad de Valparaíso; Chile. Universidad San Sebastián; ChileFil: Lopez Rodriguez, Angelica M.. Universidad Juárez del Estado de Durango; MéxicoFil: Neely, Alan. Universidad de Valparaíso; ChileFil: Hernández Ochoa, Erick O.. University of Maryland; Estados UnidosFil: González, Carlos. Universidad de Valparaíso; Chile. University of Miami; Estados UnidosFrontiers Media2023-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/228408Peña Pichicoi, Antonio; Fernández, Miguel; Navarro Quezada, Nieves; Alvear Arias, Juan José; Carrillo, Christian A.; et al.; N-terminal region is responsible for mHv1 channel activity in MDSCs; Frontiers Media; Frontiers in Pharmacology; 14; 1265130; 10-2023; 1-141663-9812CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2023.1265130/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fphar.2023.1265130info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:49:58Zoai:ri.conicet.gov.ar:11336/228408instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:49:58.921CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv N-terminal region is responsible for mHv1 channel activity in MDSCs
title N-terminal region is responsible for mHv1 channel activity in MDSCs
spellingShingle N-terminal region is responsible for mHv1 channel activity in MDSCs
Peña Pichicoi, Antonio
CLONING
IMMUNOSUPPRESSION
MHV1.1
MHV1.2
MHV1.3
MYELOID-DERIVED SUPPRESSOR CELLS
VOLTAGE-GATED PROTON CHANNEL
title_short N-terminal region is responsible for mHv1 channel activity in MDSCs
title_full N-terminal region is responsible for mHv1 channel activity in MDSCs
title_fullStr N-terminal region is responsible for mHv1 channel activity in MDSCs
title_full_unstemmed N-terminal region is responsible for mHv1 channel activity in MDSCs
title_sort N-terminal region is responsible for mHv1 channel activity in MDSCs
dc.creator.none.fl_str_mv Peña Pichicoi, Antonio
Fernández, Miguel
Navarro Quezada, Nieves
Alvear Arias, Juan José
Carrillo, Christian A.
Carmona, Emerson M.
Gárate, José Antonio
Lopez Rodriguez, Angelica M.
Neely, Alan
Hernández Ochoa, Erick O.
González, Carlos
author Peña Pichicoi, Antonio
author_facet Peña Pichicoi, Antonio
Fernández, Miguel
Navarro Quezada, Nieves
Alvear Arias, Juan José
Carrillo, Christian A.
Carmona, Emerson M.
Gárate, José Antonio
Lopez Rodriguez, Angelica M.
Neely, Alan
Hernández Ochoa, Erick O.
González, Carlos
author_role author
author2 Fernández, Miguel
Navarro Quezada, Nieves
Alvear Arias, Juan José
Carrillo, Christian A.
Carmona, Emerson M.
Gárate, José Antonio
Lopez Rodriguez, Angelica M.
Neely, Alan
Hernández Ochoa, Erick O.
González, Carlos
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv CLONING
IMMUNOSUPPRESSION
MHV1.1
MHV1.2
MHV1.3
MYELOID-DERIVED SUPPRESSOR CELLS
VOLTAGE-GATED PROTON CHANNEL
topic CLONING
IMMUNOSUPPRESSION
MHV1.1
MHV1.2
MHV1.3
MYELOID-DERIVED SUPPRESSOR CELLS
VOLTAGE-GATED PROTON CHANNEL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Voltage-gated proton channels (Hv1) are important regulators of the immunosuppressive function of myeloid-derived suppressor cells (MDSCs) in mice and have been proposed as a potential therapeutic target to alleviate dysregulated immunosuppression in tumors. However, till date, there is a lack of evidence regarding the functioning of the Hvcn1 and reports on mHv1 isoform diversity in mice and MDSCs. A computational prediction has suggested that the Hvcn1 gene may express up to six transcript variants, three of which are translated into distinct N-terminal isoforms of mHv1: mHv1.1 (269 aa), mHv1.2 (269 + 42 aa), and mHv1.3 (269 + 4 aa). To validate this prediction, we used RT-PCR on total RNA extracted from MDSCs, and the presence of all six predicted mRNA variances was confirmed. Subsequently, the open-reading frames (ORFs) encoding for mHv1 isoforms were cloned and expressed in Xenopus laevis oocytes for proton current recording using a macro-patch voltage clamp. Our findings reveal that all three isoforms are mammalian mHv1 channels, with distinct differences in their activation properties. Specifically, the longest isoform, mHv1.2, displays a right-shifted conductance–voltage (GV) curve and slower opening kinetics, compared to the mid-length isoform, mHv1.3, and the shortest canonical isoform, mHv1.1. While mHv1.3 exhibits a V0.5 similar to that of mHv1.1, mHv1.3 demonstrates significantly slower activation kinetics than mHv1.1. These results suggest that isoform gating efficiency is inversely related to the length of the N-terminal end. To further explore this, we created the truncated mHv1.2 ΔN20 construct by removing the first 20 amino acids from the N-terminus of mHv1.2. This construct displayed intermediate activation properties, with a V0.5 value lying intermediate of mHv1.1 and mHv1.2, and activation kinetics that were faster than that of mHv1.2 but slower than that of mHv1.1. Overall, these findings indicate that alternative splicing of the N-terminal exon in mRNA transcripts encoding mHv1 isoforms is a regulatory mechanism for mHv1 function within MDSCs. While MDSCs have the capability to translate multiple Hv1 isoforms with varying gating properties, the Hvcn1 gene promotes the dominant expression of mHv1.1, which exhibits the most efficient gating among all mHv1 isoforms.
Fil: Peña Pichicoi, Antonio. Universidad de Valparaíso; Chile
Fil: Fernández, Miguel. Universidad de Valparaíso; Chile
Fil: Navarro Quezada, Nieves. Universidad de Valparaíso; Chile
Fil: Alvear Arias, Juan José. Universidad de Valparaíso; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina
Fil: Carrillo, Christian A.. Universidad de Valparaíso; Chile
Fil: Carmona, Emerson M.. Texas Tech University Health Sciences Center; Estados Unidos
Fil: Gárate, José Antonio. Universidad de Valparaíso; Chile. Universidad San Sebastián; Chile
Fil: Lopez Rodriguez, Angelica M.. Universidad Juárez del Estado de Durango; México
Fil: Neely, Alan. Universidad de Valparaíso; Chile
Fil: Hernández Ochoa, Erick O.. University of Maryland; Estados Unidos
Fil: González, Carlos. Universidad de Valparaíso; Chile. University of Miami; Estados Unidos
description Voltage-gated proton channels (Hv1) are important regulators of the immunosuppressive function of myeloid-derived suppressor cells (MDSCs) in mice and have been proposed as a potential therapeutic target to alleviate dysregulated immunosuppression in tumors. However, till date, there is a lack of evidence regarding the functioning of the Hvcn1 and reports on mHv1 isoform diversity in mice and MDSCs. A computational prediction has suggested that the Hvcn1 gene may express up to six transcript variants, three of which are translated into distinct N-terminal isoforms of mHv1: mHv1.1 (269 aa), mHv1.2 (269 + 42 aa), and mHv1.3 (269 + 4 aa). To validate this prediction, we used RT-PCR on total RNA extracted from MDSCs, and the presence of all six predicted mRNA variances was confirmed. Subsequently, the open-reading frames (ORFs) encoding for mHv1 isoforms were cloned and expressed in Xenopus laevis oocytes for proton current recording using a macro-patch voltage clamp. Our findings reveal that all three isoforms are mammalian mHv1 channels, with distinct differences in their activation properties. Specifically, the longest isoform, mHv1.2, displays a right-shifted conductance–voltage (GV) curve and slower opening kinetics, compared to the mid-length isoform, mHv1.3, and the shortest canonical isoform, mHv1.1. While mHv1.3 exhibits a V0.5 similar to that of mHv1.1, mHv1.3 demonstrates significantly slower activation kinetics than mHv1.1. These results suggest that isoform gating efficiency is inversely related to the length of the N-terminal end. To further explore this, we created the truncated mHv1.2 ΔN20 construct by removing the first 20 amino acids from the N-terminus of mHv1.2. This construct displayed intermediate activation properties, with a V0.5 value lying intermediate of mHv1.1 and mHv1.2, and activation kinetics that were faster than that of mHv1.2 but slower than that of mHv1.1. Overall, these findings indicate that alternative splicing of the N-terminal exon in mRNA transcripts encoding mHv1 isoforms is a regulatory mechanism for mHv1 function within MDSCs. While MDSCs have the capability to translate multiple Hv1 isoforms with varying gating properties, the Hvcn1 gene promotes the dominant expression of mHv1.1, which exhibits the most efficient gating among all mHv1 isoforms.
publishDate 2023
dc.date.none.fl_str_mv 2023-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/228408
Peña Pichicoi, Antonio; Fernández, Miguel; Navarro Quezada, Nieves; Alvear Arias, Juan José; Carrillo, Christian A.; et al.; N-terminal region is responsible for mHv1 channel activity in MDSCs; Frontiers Media; Frontiers in Pharmacology; 14; 1265130; 10-2023; 1-14
1663-9812
CONICET Digital
CONICET
url http://hdl.handle.net/11336/228408
identifier_str_mv Peña Pichicoi, Antonio; Fernández, Miguel; Navarro Quezada, Nieves; Alvear Arias, Juan José; Carrillo, Christian A.; et al.; N-terminal region is responsible for mHv1 channel activity in MDSCs; Frontiers Media; Frontiers in Pharmacology; 14; 1265130; 10-2023; 1-14
1663-9812
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2023.1265130/full
info:eu-repo/semantics/altIdentifier/doi/10.3389/fphar.2023.1265130
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Frontiers Media
publisher.none.fl_str_mv Frontiers Media
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613542933692416
score 13.070432