Determination of unknown thermal coefficients in a Stefan problem for Storm’s type materials
- Autores
- Briozzo, Adriana Clotilde
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider a nonlinear one-dimensional Stefan problem for a semi-infinite material x> 0 , with phase change temperature Tf. We assume that the heat capacity and the thermal conductivity satisfy a Storm’s condition. A convective boundary condition and a heat flux over-specified condition on the fixed face x= 0 are considered. Unknown thermal coefficients are determined for the free boundary problem and for the associate moving boundary problem and we give sufficient conditions to obtain a parametric representation of a similarity type solution. Moreover, we give formulae for the thermal coefficients in both cases.
Fil: Briozzo, Adriana Clotilde. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
FREE BOUNDARY PROBLEM
OVER-SPECIFIED BOUNDARY CONDITION
PHASE-CHANGE PROCESS
SIMILARITY SOLUTION
STEFAN PROBLEM
UNKNOWN THERMAL COEFFICIENT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/90863
Ver los metadatos del registro completo
id |
CONICETDig_e6de7f074b353163af343c282fc21ad7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/90863 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Determination of unknown thermal coefficients in a Stefan problem for Storm’s type materialsBriozzo, Adriana ClotildeFREE BOUNDARY PROBLEMOVER-SPECIFIED BOUNDARY CONDITIONPHASE-CHANGE PROCESSSIMILARITY SOLUTIONSTEFAN PROBLEMUNKNOWN THERMAL COEFFICIENThttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider a nonlinear one-dimensional Stefan problem for a semi-infinite material x> 0 , with phase change temperature Tf. We assume that the heat capacity and the thermal conductivity satisfy a Storm’s condition. A convective boundary condition and a heat flux over-specified condition on the fixed face x= 0 are considered. Unknown thermal coefficients are determined for the free boundary problem and for the associate moving boundary problem and we give sufficient conditions to obtain a parametric representation of a similarity type solution. Moreover, we give formulae for the thermal coefficients in both cases.Fil: Briozzo, Adriana Clotilde. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSociedade Brasileira de Matemática Aplicada e Computacional2018-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/90863Briozzo, Adriana Clotilde; Determination of unknown thermal coefficients in a Stefan problem for Storm’s type materials; Sociedade Brasileira de Matemática Aplicada e Computacional; Matematica Aplicada E Computacional; 37; 4; 9-2018; 4499-45170101-82051807-0302CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s40314-017-0524-zinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs40314-017-0524-zinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:00Zoai:ri.conicet.gov.ar:11336/90863instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:00.66CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Determination of unknown thermal coefficients in a Stefan problem for Storm’s type materials |
title |
Determination of unknown thermal coefficients in a Stefan problem for Storm’s type materials |
spellingShingle |
Determination of unknown thermal coefficients in a Stefan problem for Storm’s type materials Briozzo, Adriana Clotilde FREE BOUNDARY PROBLEM OVER-SPECIFIED BOUNDARY CONDITION PHASE-CHANGE PROCESS SIMILARITY SOLUTION STEFAN PROBLEM UNKNOWN THERMAL COEFFICIENT |
title_short |
Determination of unknown thermal coefficients in a Stefan problem for Storm’s type materials |
title_full |
Determination of unknown thermal coefficients in a Stefan problem for Storm’s type materials |
title_fullStr |
Determination of unknown thermal coefficients in a Stefan problem for Storm’s type materials |
title_full_unstemmed |
Determination of unknown thermal coefficients in a Stefan problem for Storm’s type materials |
title_sort |
Determination of unknown thermal coefficients in a Stefan problem for Storm’s type materials |
dc.creator.none.fl_str_mv |
Briozzo, Adriana Clotilde |
author |
Briozzo, Adriana Clotilde |
author_facet |
Briozzo, Adriana Clotilde |
author_role |
author |
dc.subject.none.fl_str_mv |
FREE BOUNDARY PROBLEM OVER-SPECIFIED BOUNDARY CONDITION PHASE-CHANGE PROCESS SIMILARITY SOLUTION STEFAN PROBLEM UNKNOWN THERMAL COEFFICIENT |
topic |
FREE BOUNDARY PROBLEM OVER-SPECIFIED BOUNDARY CONDITION PHASE-CHANGE PROCESS SIMILARITY SOLUTION STEFAN PROBLEM UNKNOWN THERMAL COEFFICIENT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider a nonlinear one-dimensional Stefan problem for a semi-infinite material x> 0 , with phase change temperature Tf. We assume that the heat capacity and the thermal conductivity satisfy a Storm’s condition. A convective boundary condition and a heat flux over-specified condition on the fixed face x= 0 are considered. Unknown thermal coefficients are determined for the free boundary problem and for the associate moving boundary problem and we give sufficient conditions to obtain a parametric representation of a similarity type solution. Moreover, we give formulae for the thermal coefficients in both cases. Fil: Briozzo, Adriana Clotilde. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We consider a nonlinear one-dimensional Stefan problem for a semi-infinite material x> 0 , with phase change temperature Tf. We assume that the heat capacity and the thermal conductivity satisfy a Storm’s condition. A convective boundary condition and a heat flux over-specified condition on the fixed face x= 0 are considered. Unknown thermal coefficients are determined for the free boundary problem and for the associate moving boundary problem and we give sufficient conditions to obtain a parametric representation of a similarity type solution. Moreover, we give formulae for the thermal coefficients in both cases. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/90863 Briozzo, Adriana Clotilde; Determination of unknown thermal coefficients in a Stefan problem for Storm’s type materials; Sociedade Brasileira de Matemática Aplicada e Computacional; Matematica Aplicada E Computacional; 37; 4; 9-2018; 4499-4517 0101-8205 1807-0302 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/90863 |
identifier_str_mv |
Briozzo, Adriana Clotilde; Determination of unknown thermal coefficients in a Stefan problem for Storm’s type materials; Sociedade Brasileira de Matemática Aplicada e Computacional; Matematica Aplicada E Computacional; 37; 4; 9-2018; 4499-4517 0101-8205 1807-0302 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s40314-017-0524-z info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs40314-017-0524-z |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268830569594880 |
score |
13.13397 |