One-Dimensional Nonlinear Stefan Problems in Storm's Materials
- Autores
- Briozzo, Adriana Clotilde; Natale, María Fernanda
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider two one-phase nonlinear one-dimensional Stefan problems for a semi-infinite material x > 0; with phase change temperature Tf : We assume that the heat capacity and the thermal conductivity satisfy a Storm’s condition. In the first case, we assume a heat flux boundary condition of the type q(t) =q0t√ , and in the second case, we assume a temperature boundary condition T = Ts < Tf at the fixed face. Solutions of similarity type are obtained in both cases, and the equivalence of the two problems is demonstrated. We also give procedures in order to compute the explicit solution.
Fil: Briozzo, Adriana Clotilde. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Natale, María Fernanda. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
STEFAN PROBLEM
FREE BOUNDARY PROBLEM
PHASE-CHANGE PROCESS
SIMILARITY SOLUTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/49996
Ver los metadatos del registro completo
id |
CONICETDig_9f7e4e0bc33c40ab541e2f3713945983 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/49996 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
One-Dimensional Nonlinear Stefan Problems in Storm's MaterialsBriozzo, Adriana ClotildeNatale, María FernandaSTEFAN PROBLEMFREE BOUNDARY PROBLEMPHASE-CHANGE PROCESSSIMILARITY SOLUTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider two one-phase nonlinear one-dimensional Stefan problems for a semi-infinite material x > 0; with phase change temperature Tf : We assume that the heat capacity and the thermal conductivity satisfy a Storm’s condition. In the first case, we assume a heat flux boundary condition of the type q(t) =q0t√ , and in the second case, we assume a temperature boundary condition T = Ts < Tf at the fixed face. Solutions of similarity type are obtained in both cases, and the equivalence of the two problems is demonstrated. We also give procedures in order to compute the explicit solution.Fil: Briozzo, Adriana Clotilde. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Natale, María Fernanda. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaMDPI2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/49996Briozzo, Adriana Clotilde; Natale, María Fernanda; One-Dimensional Nonlinear Stefan Problems in Storm's Materials; MDPI; Mathematics; 2; 1; 1-2014; 1-112227-7390CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/math2010001info:eu-repo/semantics/altIdentifier/url/http://www.mdpi.com/2227-7390/2/1/1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:37Zoai:ri.conicet.gov.ar:11336/49996instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:37.293CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
One-Dimensional Nonlinear Stefan Problems in Storm's Materials |
title |
One-Dimensional Nonlinear Stefan Problems in Storm's Materials |
spellingShingle |
One-Dimensional Nonlinear Stefan Problems in Storm's Materials Briozzo, Adriana Clotilde STEFAN PROBLEM FREE BOUNDARY PROBLEM PHASE-CHANGE PROCESS SIMILARITY SOLUTION |
title_short |
One-Dimensional Nonlinear Stefan Problems in Storm's Materials |
title_full |
One-Dimensional Nonlinear Stefan Problems in Storm's Materials |
title_fullStr |
One-Dimensional Nonlinear Stefan Problems in Storm's Materials |
title_full_unstemmed |
One-Dimensional Nonlinear Stefan Problems in Storm's Materials |
title_sort |
One-Dimensional Nonlinear Stefan Problems in Storm's Materials |
dc.creator.none.fl_str_mv |
Briozzo, Adriana Clotilde Natale, María Fernanda |
author |
Briozzo, Adriana Clotilde |
author_facet |
Briozzo, Adriana Clotilde Natale, María Fernanda |
author_role |
author |
author2 |
Natale, María Fernanda |
author2_role |
author |
dc.subject.none.fl_str_mv |
STEFAN PROBLEM FREE BOUNDARY PROBLEM PHASE-CHANGE PROCESS SIMILARITY SOLUTION |
topic |
STEFAN PROBLEM FREE BOUNDARY PROBLEM PHASE-CHANGE PROCESS SIMILARITY SOLUTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider two one-phase nonlinear one-dimensional Stefan problems for a semi-infinite material x > 0; with phase change temperature Tf : We assume that the heat capacity and the thermal conductivity satisfy a Storm’s condition. In the first case, we assume a heat flux boundary condition of the type q(t) =q0t√ , and in the second case, we assume a temperature boundary condition T = Ts < Tf at the fixed face. Solutions of similarity type are obtained in both cases, and the equivalence of the two problems is demonstrated. We also give procedures in order to compute the explicit solution. Fil: Briozzo, Adriana Clotilde. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Natale, María Fernanda. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We consider two one-phase nonlinear one-dimensional Stefan problems for a semi-infinite material x > 0; with phase change temperature Tf : We assume that the heat capacity and the thermal conductivity satisfy a Storm’s condition. In the first case, we assume a heat flux boundary condition of the type q(t) =q0t√ , and in the second case, we assume a temperature boundary condition T = Ts < Tf at the fixed face. Solutions of similarity type are obtained in both cases, and the equivalence of the two problems is demonstrated. We also give procedures in order to compute the explicit solution. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/49996 Briozzo, Adriana Clotilde; Natale, María Fernanda; One-Dimensional Nonlinear Stefan Problems in Storm's Materials; MDPI; Mathematics; 2; 1; 1-2014; 1-11 2227-7390 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/49996 |
identifier_str_mv |
Briozzo, Adriana Clotilde; Natale, María Fernanda; One-Dimensional Nonlinear Stefan Problems in Storm's Materials; MDPI; Mathematics; 2; 1; 1-2014; 1-11 2227-7390 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3390/math2010001 info:eu-repo/semantics/altIdentifier/url/http://www.mdpi.com/2227-7390/2/1/1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269919533596672 |
score |
13.13397 |