One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin type

Autores
Briozzo, Adriana Clotilde; Natale, María Fernanda
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study a one-phase Stefan problem for a semi-in nite material with temperature-dependent thermal conductivity with a boundary condition of Robin type at the xed face x = 0. We obtain su cient conditions for data in order to have a parametric representation of the solution of similarity type for t ≥ t0 > 0 with t0 an arbitrary positive time. This explicit solution is obtained through the unique solution of an integral equation with the time as a parameter.
Fil: Briozzo, Adriana Clotilde. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico Rosario; Argentina
Fil: Natale, María Fernanda. Universidad Austral; Argentina
Materia
Stefan Problem
Free Boundary Problem
Phase-Change Process
Nonlinear Thermal Conductivity
Similarity Solution
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/13393

id CONICETDig_55be92ac8f3ceeadd714179cd2c953bd
oai_identifier_str oai:ri.conicet.gov.ar:11336/13393
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin typeBriozzo, Adriana ClotildeNatale, María FernandaStefan ProblemFree Boundary ProblemPhase-Change ProcessNonlinear Thermal ConductivitySimilarity Solutionhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study a one-phase Stefan problem for a semi-in nite material with temperature-dependent thermal conductivity with a boundary condition of Robin type at the xed face x = 0. We obtain su cient conditions for data in order to have a parametric representation of the solution of similarity type for t ≥ t0 > 0 with t0 an arbitrary positive time. This explicit solution is obtained through the unique solution of an integral equation with the time as a parameter.Fil: Briozzo, Adriana Clotilde. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico Rosario; ArgentinaFil: Natale, María Fernanda. Universidad Austral; ArgentinaDe Gruyter2015-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13393Briozzo, Adriana Clotilde; Natale, María Fernanda; One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin type; De Gruyter; Journal Of Applied Analysis; 21; 2; 12-2015; 89-971425-69081869-6082enginfo:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/ 10.1515/jaa-2015-0009info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/jaa.2015.21.issue-2/jaa-2015-0009/jaa-2015-0009.xmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:23:19Zoai:ri.conicet.gov.ar:11336/13393instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:23:19.322CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin type
title One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin type
spellingShingle One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin type
Briozzo, Adriana Clotilde
Stefan Problem
Free Boundary Problem
Phase-Change Process
Nonlinear Thermal Conductivity
Similarity Solution
title_short One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin type
title_full One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin type
title_fullStr One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin type
title_full_unstemmed One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin type
title_sort One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin type
dc.creator.none.fl_str_mv Briozzo, Adriana Clotilde
Natale, María Fernanda
author Briozzo, Adriana Clotilde
author_facet Briozzo, Adriana Clotilde
Natale, María Fernanda
author_role author
author2 Natale, María Fernanda
author2_role author
dc.subject.none.fl_str_mv Stefan Problem
Free Boundary Problem
Phase-Change Process
Nonlinear Thermal Conductivity
Similarity Solution
topic Stefan Problem
Free Boundary Problem
Phase-Change Process
Nonlinear Thermal Conductivity
Similarity Solution
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study a one-phase Stefan problem for a semi-in nite material with temperature-dependent thermal conductivity with a boundary condition of Robin type at the xed face x = 0. We obtain su cient conditions for data in order to have a parametric representation of the solution of similarity type for t ≥ t0 > 0 with t0 an arbitrary positive time. This explicit solution is obtained through the unique solution of an integral equation with the time as a parameter.
Fil: Briozzo, Adriana Clotilde. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico Rosario; Argentina
Fil: Natale, María Fernanda. Universidad Austral; Argentina
description We study a one-phase Stefan problem for a semi-in nite material with temperature-dependent thermal conductivity with a boundary condition of Robin type at the xed face x = 0. We obtain su cient conditions for data in order to have a parametric representation of the solution of similarity type for t ≥ t0 > 0 with t0 an arbitrary positive time. This explicit solution is obtained through the unique solution of an integral equation with the time as a parameter.
publishDate 2015
dc.date.none.fl_str_mv 2015-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/13393
Briozzo, Adriana Clotilde; Natale, María Fernanda; One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin type; De Gruyter; Journal Of Applied Analysis; 21; 2; 12-2015; 89-97
1425-6908
1869-6082
url http://hdl.handle.net/11336/13393
identifier_str_mv Briozzo, Adriana Clotilde; Natale, María Fernanda; One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin type; De Gruyter; Journal Of Applied Analysis; 21; 2; 12-2015; 89-97
1425-6908
1869-6082
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/ 10.1515/jaa-2015-0009
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/jaa.2015.21.issue-2/jaa-2015-0009/jaa-2015-0009.xml
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv De Gruyter
publisher.none.fl_str_mv De Gruyter
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606580635893760
score 13.001348