One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin type
- Autores
- Briozzo, Adriana Clotilde; Natale, María Fernanda
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study a one-phase Stefan problem for a semi-in nite material with temperature-dependent thermal conductivity with a boundary condition of Robin type at the xed face x = 0. We obtain su cient conditions for data in order to have a parametric representation of the solution of similarity type for t ≥ t0 > 0 with t0 an arbitrary positive time. This explicit solution is obtained through the unique solution of an integral equation with the time as a parameter.
Fil: Briozzo, Adriana Clotilde. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico Rosario; Argentina
Fil: Natale, María Fernanda. Universidad Austral; Argentina - Materia
-
Stefan Problem
Free Boundary Problem
Phase-Change Process
Nonlinear Thermal Conductivity
Similarity Solution - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/13393
Ver los metadatos del registro completo
id |
CONICETDig_55be92ac8f3ceeadd714179cd2c953bd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/13393 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin typeBriozzo, Adriana ClotildeNatale, María FernandaStefan ProblemFree Boundary ProblemPhase-Change ProcessNonlinear Thermal ConductivitySimilarity Solutionhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study a one-phase Stefan problem for a semi-in nite material with temperature-dependent thermal conductivity with a boundary condition of Robin type at the xed face x = 0. We obtain su cient conditions for data in order to have a parametric representation of the solution of similarity type for t ≥ t0 > 0 with t0 an arbitrary positive time. This explicit solution is obtained through the unique solution of an integral equation with the time as a parameter.Fil: Briozzo, Adriana Clotilde. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico Rosario; ArgentinaFil: Natale, María Fernanda. Universidad Austral; ArgentinaDe Gruyter2015-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13393Briozzo, Adriana Clotilde; Natale, María Fernanda; One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin type; De Gruyter; Journal Of Applied Analysis; 21; 2; 12-2015; 89-971425-69081869-6082enginfo:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/ 10.1515/jaa-2015-0009info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/jaa.2015.21.issue-2/jaa-2015-0009/jaa-2015-0009.xmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:23:19Zoai:ri.conicet.gov.ar:11336/13393instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:23:19.322CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin type |
title |
One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin type |
spellingShingle |
One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin type Briozzo, Adriana Clotilde Stefan Problem Free Boundary Problem Phase-Change Process Nonlinear Thermal Conductivity Similarity Solution |
title_short |
One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin type |
title_full |
One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin type |
title_fullStr |
One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin type |
title_full_unstemmed |
One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin type |
title_sort |
One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin type |
dc.creator.none.fl_str_mv |
Briozzo, Adriana Clotilde Natale, María Fernanda |
author |
Briozzo, Adriana Clotilde |
author_facet |
Briozzo, Adriana Clotilde Natale, María Fernanda |
author_role |
author |
author2 |
Natale, María Fernanda |
author2_role |
author |
dc.subject.none.fl_str_mv |
Stefan Problem Free Boundary Problem Phase-Change Process Nonlinear Thermal Conductivity Similarity Solution |
topic |
Stefan Problem Free Boundary Problem Phase-Change Process Nonlinear Thermal Conductivity Similarity Solution |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study a one-phase Stefan problem for a semi-in nite material with temperature-dependent thermal conductivity with a boundary condition of Robin type at the xed face x = 0. We obtain su cient conditions for data in order to have a parametric representation of the solution of similarity type for t ≥ t0 > 0 with t0 an arbitrary positive time. This explicit solution is obtained through the unique solution of an integral equation with the time as a parameter. Fil: Briozzo, Adriana Clotilde. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico Rosario; Argentina Fil: Natale, María Fernanda. Universidad Austral; Argentina |
description |
We study a one-phase Stefan problem for a semi-in nite material with temperature-dependent thermal conductivity with a boundary condition of Robin type at the xed face x = 0. We obtain su cient conditions for data in order to have a parametric representation of the solution of similarity type for t ≥ t0 > 0 with t0 an arbitrary positive time. This explicit solution is obtained through the unique solution of an integral equation with the time as a parameter. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/13393 Briozzo, Adriana Clotilde; Natale, María Fernanda; One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin type; De Gruyter; Journal Of Applied Analysis; 21; 2; 12-2015; 89-97 1425-6908 1869-6082 |
url |
http://hdl.handle.net/11336/13393 |
identifier_str_mv |
Briozzo, Adriana Clotilde; Natale, María Fernanda; One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin type; De Gruyter; Journal Of Applied Analysis; 21; 2; 12-2015; 89-97 1425-6908 1869-6082 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/ 10.1515/jaa-2015-0009 info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/jaa.2015.21.issue-2/jaa-2015-0009/jaa-2015-0009.xml |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606580635893760 |
score |
13.001348 |