Convergence of the solution of the one-phase Stefan problem when the heat transfer coefficient goes to zero
- Autores
- Briozzo, Adriana Clotilde; Tarzia, Domingo Alberto
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider the one-phase unidimensional Stefan problem with a convective boundary condition at the fixed face, with a heat transfer coefficient (proportional to the Biot number) h > 0. We study the limit of the temperature θh and the free boundary sh when h goes to zero, and we also obtain an order of convergence. The goal of this paper is to do the mathematical analysis of the physical behavior given in [C. Naaktgeboren, The zero-phase Stefan problem, Int. J. Heat Mass Transfer 50 (2007) 4614–4622].
Fil: Briozzo, Adriana Clotilde. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina - Materia
-
STEFAN PROBLEM
FREE BOUNDARY PROBLEM
HEAT TRANSFER COEFFICIENT
ASYMPTOTIC BEHAVIOR - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/268988
Ver los metadatos del registro completo
id |
CONICETDig_4271fb92bbd3ea0b24e0ee0e7e817b4c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/268988 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Convergence of the solution of the one-phase Stefan problem when the heat transfer coefficient goes to zeroBriozzo, Adriana ClotildeTarzia, Domingo AlbertoSTEFAN PROBLEMFREE BOUNDARY PROBLEMHEAT TRANSFER COEFFICIENTASYMPTOTIC BEHAVIORhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider the one-phase unidimensional Stefan problem with a convective boundary condition at the fixed face, with a heat transfer coefficient (proportional to the Biot number) h > 0. We study the limit of the temperature θh and the free boundary sh when h goes to zero, and we also obtain an order of convergence. The goal of this paper is to do the mathematical analysis of the physical behavior given in [C. Naaktgeboren, The zero-phase Stefan problem, Int. J. Heat Mass Transfer 50 (2007) 4614–4622].Fil: Briozzo, Adriana Clotilde. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; ArgentinaFil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; ArgentinaAcademic Press Inc Elsevier Science2012-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/268988Briozzo, Adriana Clotilde; Tarzia, Domingo Alberto; Convergence of the solution of the one-phase Stefan problem when the heat transfer coefficient goes to zero; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 389; 1; 2-2012; 138-1460022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X11010699info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2011.11.049info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:39Zoai:ri.conicet.gov.ar:11336/268988instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:39.696CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Convergence of the solution of the one-phase Stefan problem when the heat transfer coefficient goes to zero |
title |
Convergence of the solution of the one-phase Stefan problem when the heat transfer coefficient goes to zero |
spellingShingle |
Convergence of the solution of the one-phase Stefan problem when the heat transfer coefficient goes to zero Briozzo, Adriana Clotilde STEFAN PROBLEM FREE BOUNDARY PROBLEM HEAT TRANSFER COEFFICIENT ASYMPTOTIC BEHAVIOR |
title_short |
Convergence of the solution of the one-phase Stefan problem when the heat transfer coefficient goes to zero |
title_full |
Convergence of the solution of the one-phase Stefan problem when the heat transfer coefficient goes to zero |
title_fullStr |
Convergence of the solution of the one-phase Stefan problem when the heat transfer coefficient goes to zero |
title_full_unstemmed |
Convergence of the solution of the one-phase Stefan problem when the heat transfer coefficient goes to zero |
title_sort |
Convergence of the solution of the one-phase Stefan problem when the heat transfer coefficient goes to zero |
dc.creator.none.fl_str_mv |
Briozzo, Adriana Clotilde Tarzia, Domingo Alberto |
author |
Briozzo, Adriana Clotilde |
author_facet |
Briozzo, Adriana Clotilde Tarzia, Domingo Alberto |
author_role |
author |
author2 |
Tarzia, Domingo Alberto |
author2_role |
author |
dc.subject.none.fl_str_mv |
STEFAN PROBLEM FREE BOUNDARY PROBLEM HEAT TRANSFER COEFFICIENT ASYMPTOTIC BEHAVIOR |
topic |
STEFAN PROBLEM FREE BOUNDARY PROBLEM HEAT TRANSFER COEFFICIENT ASYMPTOTIC BEHAVIOR |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider the one-phase unidimensional Stefan problem with a convective boundary condition at the fixed face, with a heat transfer coefficient (proportional to the Biot number) h > 0. We study the limit of the temperature θh and the free boundary sh when h goes to zero, and we also obtain an order of convergence. The goal of this paper is to do the mathematical analysis of the physical behavior given in [C. Naaktgeboren, The zero-phase Stefan problem, Int. J. Heat Mass Transfer 50 (2007) 4614–4622]. Fil: Briozzo, Adriana Clotilde. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina |
description |
We consider the one-phase unidimensional Stefan problem with a convective boundary condition at the fixed face, with a heat transfer coefficient (proportional to the Biot number) h > 0. We study the limit of the temperature θh and the free boundary sh when h goes to zero, and we also obtain an order of convergence. The goal of this paper is to do the mathematical analysis of the physical behavior given in [C. Naaktgeboren, The zero-phase Stefan problem, Int. J. Heat Mass Transfer 50 (2007) 4614–4622]. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/268988 Briozzo, Adriana Clotilde; Tarzia, Domingo Alberto; Convergence of the solution of the one-phase Stefan problem when the heat transfer coefficient goes to zero; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 389; 1; 2-2012; 138-146 0022-247X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/268988 |
identifier_str_mv |
Briozzo, Adriana Clotilde; Tarzia, Domingo Alberto; Convergence of the solution of the one-phase Stefan problem when the heat transfer coefficient goes to zero; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 389; 1; 2-2012; 138-146 0022-247X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X11010699 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2011.11.049 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613586829180928 |
score |
13.070432 |