Convergence of the solution of the one-phase Stefan problem when the heat transfer coefficient goes to zero

Autores
Briozzo, Adriana Clotilde; Tarzia, Domingo Alberto
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider the one-phase unidimensional Stefan problem with a convective boundary condition at the fixed face, with a heat transfer coefficient (proportional to the Biot number) h > 0. We study the limit of the temperature θh and the free boundary sh when h goes to zero, and we also obtain an order of convergence. The goal of this paper is to do the mathematical analysis of the physical behavior given in [C. Naaktgeboren, The zero-phase Stefan problem, Int. J. Heat Mass Transfer 50 (2007) 4614–4622].
Fil: Briozzo, Adriana Clotilde. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
Materia
STEFAN PROBLEM
FREE BOUNDARY PROBLEM
HEAT TRANSFER COEFFICIENT
ASYMPTOTIC BEHAVIOR
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/268988

id CONICETDig_4271fb92bbd3ea0b24e0ee0e7e817b4c
oai_identifier_str oai:ri.conicet.gov.ar:11336/268988
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Convergence of the solution of the one-phase Stefan problem when the heat transfer coefficient goes to zeroBriozzo, Adriana ClotildeTarzia, Domingo AlbertoSTEFAN PROBLEMFREE BOUNDARY PROBLEMHEAT TRANSFER COEFFICIENTASYMPTOTIC BEHAVIORhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider the one-phase unidimensional Stefan problem with a convective boundary condition at the fixed face, with a heat transfer coefficient (proportional to the Biot number) h > 0. We study the limit of the temperature θh and the free boundary sh when h goes to zero, and we also obtain an order of convergence. The goal of this paper is to do the mathematical analysis of the physical behavior given in [C. Naaktgeboren, The zero-phase Stefan problem, Int. J. Heat Mass Transfer 50 (2007) 4614–4622].Fil: Briozzo, Adriana Clotilde. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; ArgentinaFil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; ArgentinaAcademic Press Inc Elsevier Science2012-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/268988Briozzo, Adriana Clotilde; Tarzia, Domingo Alberto; Convergence of the solution of the one-phase Stefan problem when the heat transfer coefficient goes to zero; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 389; 1; 2-2012; 138-1460022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X11010699info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2011.11.049info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:39Zoai:ri.conicet.gov.ar:11336/268988instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:39.696CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Convergence of the solution of the one-phase Stefan problem when the heat transfer coefficient goes to zero
title Convergence of the solution of the one-phase Stefan problem when the heat transfer coefficient goes to zero
spellingShingle Convergence of the solution of the one-phase Stefan problem when the heat transfer coefficient goes to zero
Briozzo, Adriana Clotilde
STEFAN PROBLEM
FREE BOUNDARY PROBLEM
HEAT TRANSFER COEFFICIENT
ASYMPTOTIC BEHAVIOR
title_short Convergence of the solution of the one-phase Stefan problem when the heat transfer coefficient goes to zero
title_full Convergence of the solution of the one-phase Stefan problem when the heat transfer coefficient goes to zero
title_fullStr Convergence of the solution of the one-phase Stefan problem when the heat transfer coefficient goes to zero
title_full_unstemmed Convergence of the solution of the one-phase Stefan problem when the heat transfer coefficient goes to zero
title_sort Convergence of the solution of the one-phase Stefan problem when the heat transfer coefficient goes to zero
dc.creator.none.fl_str_mv Briozzo, Adriana Clotilde
Tarzia, Domingo Alberto
author Briozzo, Adriana Clotilde
author_facet Briozzo, Adriana Clotilde
Tarzia, Domingo Alberto
author_role author
author2 Tarzia, Domingo Alberto
author2_role author
dc.subject.none.fl_str_mv STEFAN PROBLEM
FREE BOUNDARY PROBLEM
HEAT TRANSFER COEFFICIENT
ASYMPTOTIC BEHAVIOR
topic STEFAN PROBLEM
FREE BOUNDARY PROBLEM
HEAT TRANSFER COEFFICIENT
ASYMPTOTIC BEHAVIOR
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider the one-phase unidimensional Stefan problem with a convective boundary condition at the fixed face, with a heat transfer coefficient (proportional to the Biot number) h > 0. We study the limit of the temperature θh and the free boundary sh when h goes to zero, and we also obtain an order of convergence. The goal of this paper is to do the mathematical analysis of the physical behavior given in [C. Naaktgeboren, The zero-phase Stefan problem, Int. J. Heat Mass Transfer 50 (2007) 4614–4622].
Fil: Briozzo, Adriana Clotilde. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
description We consider the one-phase unidimensional Stefan problem with a convective boundary condition at the fixed face, with a heat transfer coefficient (proportional to the Biot number) h > 0. We study the limit of the temperature θh and the free boundary sh when h goes to zero, and we also obtain an order of convergence. The goal of this paper is to do the mathematical analysis of the physical behavior given in [C. Naaktgeboren, The zero-phase Stefan problem, Int. J. Heat Mass Transfer 50 (2007) 4614–4622].
publishDate 2012
dc.date.none.fl_str_mv 2012-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/268988
Briozzo, Adriana Clotilde; Tarzia, Domingo Alberto; Convergence of the solution of the one-phase Stefan problem when the heat transfer coefficient goes to zero; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 389; 1; 2-2012; 138-146
0022-247X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/268988
identifier_str_mv Briozzo, Adriana Clotilde; Tarzia, Domingo Alberto; Convergence of the solution of the one-phase Stefan problem when the heat transfer coefficient goes to zero; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 389; 1; 2-2012; 138-146
0022-247X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X11010699
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2011.11.049
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613586829180928
score 13.070432