Branching laws for square integrable representations
- Autores
- Duflo, Michel; Vargas, Jorge Antonio
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this note, we study irreducible square integrablerepresentation of a reductive Lie group with admissiblerestriction to some reductive subgroup. We give a simple conditionwhich insures admissible restriction and that the multiplicitiesoccurring in the decomposition in irreducible representations canbe computed in a simple explicit manner by means of a linearcombination of partition functions generalizing the multiplicityformulas due to Kostant-Heckman orHecht-Schmid. We consider also the semi-classical analogue ofthese results for coadjoint orbits.
Fil: Duflo, Michel. Universite de Paris; Francia
Fil: Vargas, Jorge Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
DISCRETE SERIES
BRANCHING LAWS
MULTIPLICITY FORMULAS
SQUARE INTEGRABLE REPRESENTATIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/189125
Ver los metadatos del registro completo
id |
CONICETDig_e6d287da9a9efe91814e2c7a2c2392a1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/189125 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Branching laws for square integrable representationsDuflo, MichelVargas, Jorge AntonioDISCRETE SERIESBRANCHING LAWSMULTIPLICITY FORMULASSQUARE INTEGRABLE REPRESENTATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this note, we study irreducible square integrablerepresentation of a reductive Lie group with admissiblerestriction to some reductive subgroup. We give a simple conditionwhich insures admissible restriction and that the multiplicitiesoccurring in the decomposition in irreducible representations canbe computed in a simple explicit manner by means of a linearcombination of partition functions generalizing the multiplicityformulas due to Kostant-Heckman orHecht-Schmid. We consider also the semi-classical analogue ofthese results for coadjoint orbits.Fil: Duflo, Michel. Universite de Paris; FranciaFil: Vargas, Jorge Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaJapan Acad2010-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/189125Duflo, Michel; Vargas, Jorge Antonio; Branching laws for square integrable representations; Japan Acad; Proceedings Of The Japan Academy. Series A; 86; 3; 2-2010; 49-540386-2194CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/journals/proceedings-of-the-japan-academy-series-a-mathematical-sciences/volume-86/issue-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:50Zoai:ri.conicet.gov.ar:11336/189125instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:50.369CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Branching laws for square integrable representations |
title |
Branching laws for square integrable representations |
spellingShingle |
Branching laws for square integrable representations Duflo, Michel DISCRETE SERIES BRANCHING LAWS MULTIPLICITY FORMULAS SQUARE INTEGRABLE REPRESENTATIONS |
title_short |
Branching laws for square integrable representations |
title_full |
Branching laws for square integrable representations |
title_fullStr |
Branching laws for square integrable representations |
title_full_unstemmed |
Branching laws for square integrable representations |
title_sort |
Branching laws for square integrable representations |
dc.creator.none.fl_str_mv |
Duflo, Michel Vargas, Jorge Antonio |
author |
Duflo, Michel |
author_facet |
Duflo, Michel Vargas, Jorge Antonio |
author_role |
author |
author2 |
Vargas, Jorge Antonio |
author2_role |
author |
dc.subject.none.fl_str_mv |
DISCRETE SERIES BRANCHING LAWS MULTIPLICITY FORMULAS SQUARE INTEGRABLE REPRESENTATIONS |
topic |
DISCRETE SERIES BRANCHING LAWS MULTIPLICITY FORMULAS SQUARE INTEGRABLE REPRESENTATIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this note, we study irreducible square integrablerepresentation of a reductive Lie group with admissiblerestriction to some reductive subgroup. We give a simple conditionwhich insures admissible restriction and that the multiplicitiesoccurring in the decomposition in irreducible representations canbe computed in a simple explicit manner by means of a linearcombination of partition functions generalizing the multiplicityformulas due to Kostant-Heckman orHecht-Schmid. We consider also the semi-classical analogue ofthese results for coadjoint orbits. Fil: Duflo, Michel. Universite de Paris; Francia Fil: Vargas, Jorge Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
In this note, we study irreducible square integrablerepresentation of a reductive Lie group with admissiblerestriction to some reductive subgroup. We give a simple conditionwhich insures admissible restriction and that the multiplicitiesoccurring in the decomposition in irreducible representations canbe computed in a simple explicit manner by means of a linearcombination of partition functions generalizing the multiplicityformulas due to Kostant-Heckman orHecht-Schmid. We consider also the semi-classical analogue ofthese results for coadjoint orbits. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/189125 Duflo, Michel; Vargas, Jorge Antonio; Branching laws for square integrable representations; Japan Acad; Proceedings Of The Japan Academy. Series A; 86; 3; 2-2010; 49-54 0386-2194 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/189125 |
identifier_str_mv |
Duflo, Michel; Vargas, Jorge Antonio; Branching laws for square integrable representations; Japan Acad; Proceedings Of The Japan Academy. Series A; 86; 3; 2-2010; 49-54 0386-2194 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/journals/proceedings-of-the-japan-academy-series-a-mathematical-sciences/volume-86/issue-3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Japan Acad |
publisher.none.fl_str_mv |
Japan Acad |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613193662464000 |
score |
13.070432 |