Branching laws for square integrable representations

Autores
Duflo, Michel; Vargas, Jorge Antonio
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this note, we study irreducible square integrablerepresentation of a reductive Lie group with admissiblerestriction to some reductive subgroup.  We give a simple conditionwhich insures admissible restriction and that the multiplicitiesoccurring in the decomposition in irreducible representations canbe computed in a simple explicit manner by means of a linearcombination of partition functions  generalizing the multiplicityformulas due to Kostant-Heckman orHecht-Schmid. We consider also the semi-classical analogue ofthese results for coadjoint orbits.
Fil: Duflo, Michel. Universite de Paris; Francia
Fil: Vargas, Jorge Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Materia
DISCRETE SERIES
BRANCHING LAWS
MULTIPLICITY FORMULAS
SQUARE INTEGRABLE REPRESENTATIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/189125

id CONICETDig_e6d287da9a9efe91814e2c7a2c2392a1
oai_identifier_str oai:ri.conicet.gov.ar:11336/189125
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Branching laws for square integrable representationsDuflo, MichelVargas, Jorge AntonioDISCRETE SERIESBRANCHING LAWSMULTIPLICITY FORMULASSQUARE INTEGRABLE REPRESENTATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this note, we study irreducible square integrablerepresentation of a reductive Lie group with admissiblerestriction to some reductive subgroup.  We give a simple conditionwhich insures admissible restriction and that the multiplicitiesoccurring in the decomposition in irreducible representations canbe computed in a simple explicit manner by means of a linearcombination of partition functions  generalizing the multiplicityformulas due to Kostant-Heckman orHecht-Schmid. We consider also the semi-classical analogue ofthese results for coadjoint orbits.Fil: Duflo, Michel. Universite de Paris; FranciaFil: Vargas, Jorge Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaJapan Acad2010-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/189125Duflo, Michel; Vargas, Jorge Antonio; Branching laws for square integrable representations; Japan Acad; Proceedings Of The Japan Academy. Series A; 86; 3; 2-2010; 49-540386-2194CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/journals/proceedings-of-the-japan-academy-series-a-mathematical-sciences/volume-86/issue-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:50Zoai:ri.conicet.gov.ar:11336/189125instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:50.369CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Branching laws for square integrable representations
title Branching laws for square integrable representations
spellingShingle Branching laws for square integrable representations
Duflo, Michel
DISCRETE SERIES
BRANCHING LAWS
MULTIPLICITY FORMULAS
SQUARE INTEGRABLE REPRESENTATIONS
title_short Branching laws for square integrable representations
title_full Branching laws for square integrable representations
title_fullStr Branching laws for square integrable representations
title_full_unstemmed Branching laws for square integrable representations
title_sort Branching laws for square integrable representations
dc.creator.none.fl_str_mv Duflo, Michel
Vargas, Jorge Antonio
author Duflo, Michel
author_facet Duflo, Michel
Vargas, Jorge Antonio
author_role author
author2 Vargas, Jorge Antonio
author2_role author
dc.subject.none.fl_str_mv DISCRETE SERIES
BRANCHING LAWS
MULTIPLICITY FORMULAS
SQUARE INTEGRABLE REPRESENTATIONS
topic DISCRETE SERIES
BRANCHING LAWS
MULTIPLICITY FORMULAS
SQUARE INTEGRABLE REPRESENTATIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this note, we study irreducible square integrablerepresentation of a reductive Lie group with admissiblerestriction to some reductive subgroup.  We give a simple conditionwhich insures admissible restriction and that the multiplicitiesoccurring in the decomposition in irreducible representations canbe computed in a simple explicit manner by means of a linearcombination of partition functions  generalizing the multiplicityformulas due to Kostant-Heckman orHecht-Schmid. We consider also the semi-classical analogue ofthese results for coadjoint orbits.
Fil: Duflo, Michel. Universite de Paris; Francia
Fil: Vargas, Jorge Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
description In this note, we study irreducible square integrablerepresentation of a reductive Lie group with admissiblerestriction to some reductive subgroup.  We give a simple conditionwhich insures admissible restriction and that the multiplicitiesoccurring in the decomposition in irreducible representations canbe computed in a simple explicit manner by means of a linearcombination of partition functions  generalizing the multiplicityformulas due to Kostant-Heckman orHecht-Schmid. We consider also the semi-classical analogue ofthese results for coadjoint orbits.
publishDate 2010
dc.date.none.fl_str_mv 2010-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/189125
Duflo, Michel; Vargas, Jorge Antonio; Branching laws for square integrable representations; Japan Acad; Proceedings Of The Japan Academy. Series A; 86; 3; 2-2010; 49-54
0386-2194
CONICET Digital
CONICET
url http://hdl.handle.net/11336/189125
identifier_str_mv Duflo, Michel; Vargas, Jorge Antonio; Branching laws for square integrable representations; Japan Acad; Proceedings Of The Japan Academy. Series A; 86; 3; 2-2010; 49-54
0386-2194
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/journals/proceedings-of-the-japan-academy-series-a-mathematical-sciences/volume-86/issue-3
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Japan Acad
publisher.none.fl_str_mv Japan Acad
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613193662464000
score 13.070432