Matrix valued classical pairs related to compact gelfand pairs of rank one
- Autores
- van Pruijssen, Maarten; Román, Pablo Manuel
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a method to obtain infinitely many examples of pairs (W, D) consisting of a matrix weight W in one variable and a symmetric second-order differential operator D. The method is based on a uniform construction of matrix valued polynomials starting from compact Gelfand pairs (G, K) of rank one and a suitable irreducible K-representation. The heart of the construction is the existence of a suitable base change Ψ0. We analyze the base change and derive several properties. The most important one is that Ψ0satisfies a first-order differential equation which enables us to compute the radial part of the Casimir operator of the group G as soon as we have an explicit expression for Ψ0. The weight W is also determined by Ψ0. We provide an algorithm to calculate Ψ0explicitly. For the pair (USp(2n), USp(2n - 2) × USp(2)) we have implemented the algorithm in GAP so that individual pairs (W, D) can be calculated explicitly. Finally we classify the Gelfand pairs (G, K) and the K-representations that yield pairs (W, D) of size 2 × 2 and we provide explicit expressions for most of these cases.
Fil: van Pruijssen, Maarten. Universität Paderborn; Alemania
Fil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
MATRIX VALUED CLASSICAL PAIRS
MULTIPLICITY FREE BRANCHING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/58331
Ver los metadatos del registro completo
id |
CONICETDig_9bd67787e1c587efb696e4a8ad1435d1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/58331 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Matrix valued classical pairs related to compact gelfand pairs of rank onevan Pruijssen, MaartenRomán, Pablo ManuelMATRIX VALUED CLASSICAL PAIRSMULTIPLICITY FREE BRANCHINGhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present a method to obtain infinitely many examples of pairs (W, D) consisting of a matrix weight W in one variable and a symmetric second-order differential operator D. The method is based on a uniform construction of matrix valued polynomials starting from compact Gelfand pairs (G, K) of rank one and a suitable irreducible K-representation. The heart of the construction is the existence of a suitable base change Ψ0. We analyze the base change and derive several properties. The most important one is that Ψ0satisfies a first-order differential equation which enables us to compute the radial part of the Casimir operator of the group G as soon as we have an explicit expression for Ψ0. The weight W is also determined by Ψ0. We provide an algorithm to calculate Ψ0explicitly. For the pair (USp(2n), USp(2n - 2) × USp(2)) we have implemented the algorithm in GAP so that individual pairs (W, D) can be calculated explicitly. Finally we classify the Gelfand pairs (G, K) and the K-representations that yield pairs (W, D) of size 2 × 2 and we provide explicit expressions for most of these cases.Fil: van Pruijssen, Maarten. Universität Paderborn; AlemaniaFil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaNatl Acad Sci Ukraine2014-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58331van Pruijssen, Maarten; Román, Pablo Manuel; Matrix valued classical pairs related to compact gelfand pairs of rank one; Natl Acad Sci Ukraine; Symmetry, Integrability And Geometry; 10; 113; 12-2014; 1-281815-0659CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.emis.de/journals/SIGMA/2014/113/info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1312.6577info:eu-repo/semantics/altIdentifier/doi/10.3842/SIGMA.2014.113info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:46:59Zoai:ri.conicet.gov.ar:11336/58331instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:47:00.107CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Matrix valued classical pairs related to compact gelfand pairs of rank one |
title |
Matrix valued classical pairs related to compact gelfand pairs of rank one |
spellingShingle |
Matrix valued classical pairs related to compact gelfand pairs of rank one van Pruijssen, Maarten MATRIX VALUED CLASSICAL PAIRS MULTIPLICITY FREE BRANCHING |
title_short |
Matrix valued classical pairs related to compact gelfand pairs of rank one |
title_full |
Matrix valued classical pairs related to compact gelfand pairs of rank one |
title_fullStr |
Matrix valued classical pairs related to compact gelfand pairs of rank one |
title_full_unstemmed |
Matrix valued classical pairs related to compact gelfand pairs of rank one |
title_sort |
Matrix valued classical pairs related to compact gelfand pairs of rank one |
dc.creator.none.fl_str_mv |
van Pruijssen, Maarten Román, Pablo Manuel |
author |
van Pruijssen, Maarten |
author_facet |
van Pruijssen, Maarten Román, Pablo Manuel |
author_role |
author |
author2 |
Román, Pablo Manuel |
author2_role |
author |
dc.subject.none.fl_str_mv |
MATRIX VALUED CLASSICAL PAIRS MULTIPLICITY FREE BRANCHING |
topic |
MATRIX VALUED CLASSICAL PAIRS MULTIPLICITY FREE BRANCHING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present a method to obtain infinitely many examples of pairs (W, D) consisting of a matrix weight W in one variable and a symmetric second-order differential operator D. The method is based on a uniform construction of matrix valued polynomials starting from compact Gelfand pairs (G, K) of rank one and a suitable irreducible K-representation. The heart of the construction is the existence of a suitable base change Ψ0. We analyze the base change and derive several properties. The most important one is that Ψ0satisfies a first-order differential equation which enables us to compute the radial part of the Casimir operator of the group G as soon as we have an explicit expression for Ψ0. The weight W is also determined by Ψ0. We provide an algorithm to calculate Ψ0explicitly. For the pair (USp(2n), USp(2n - 2) × USp(2)) we have implemented the algorithm in GAP so that individual pairs (W, D) can be calculated explicitly. Finally we classify the Gelfand pairs (G, K) and the K-representations that yield pairs (W, D) of size 2 × 2 and we provide explicit expressions for most of these cases. Fil: van Pruijssen, Maarten. Universität Paderborn; Alemania Fil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
We present a method to obtain infinitely many examples of pairs (W, D) consisting of a matrix weight W in one variable and a symmetric second-order differential operator D. The method is based on a uniform construction of matrix valued polynomials starting from compact Gelfand pairs (G, K) of rank one and a suitable irreducible K-representation. The heart of the construction is the existence of a suitable base change Ψ0. We analyze the base change and derive several properties. The most important one is that Ψ0satisfies a first-order differential equation which enables us to compute the radial part of the Casimir operator of the group G as soon as we have an explicit expression for Ψ0. The weight W is also determined by Ψ0. We provide an algorithm to calculate Ψ0explicitly. For the pair (USp(2n), USp(2n - 2) × USp(2)) we have implemented the algorithm in GAP so that individual pairs (W, D) can be calculated explicitly. Finally we classify the Gelfand pairs (G, K) and the K-representations that yield pairs (W, D) of size 2 × 2 and we provide explicit expressions for most of these cases. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/58331 van Pruijssen, Maarten; Román, Pablo Manuel; Matrix valued classical pairs related to compact gelfand pairs of rank one; Natl Acad Sci Ukraine; Symmetry, Integrability And Geometry; 10; 113; 12-2014; 1-28 1815-0659 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/58331 |
identifier_str_mv |
van Pruijssen, Maarten; Román, Pablo Manuel; Matrix valued classical pairs related to compact gelfand pairs of rank one; Natl Acad Sci Ukraine; Symmetry, Integrability And Geometry; 10; 113; 12-2014; 1-28 1815-0659 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.emis.de/journals/SIGMA/2014/113/ info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1312.6577 info:eu-repo/semantics/altIdentifier/doi/10.3842/SIGMA.2014.113 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Natl Acad Sci Ukraine |
publisher.none.fl_str_mv |
Natl Acad Sci Ukraine |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614512804626432 |
score |
13.070432 |