Pseudo-dual pairs and branching of Discrete Series
- Autores
- Vargas, Jorge Antonio
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For a semisimple Lie group G, we study Discrete Series representations with admissible branching to a symmetric subgroup H. This is done using a canonical associated symmetric subgroup H0, forming a pseudo-dual pair with H, and a corresponding branching law for this group with respect to its maximal compact subgroup. This is in analogy with either Blattner's or Kostant-Heckmann multiplicity formulas, and has some resemblance to Frobenius reciprocity. We give several explicit examples and links to Kobayashi-Pevzner theory of symmetry breaking and holographic operators. Our method is well adapted to computer algorithms, such as for example the Atlas program.
Fil: Vargas, Jorge Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. University Aarhus; Dinamarca - Materia
-
Admissible restriction
Discrete series
Branching laws
Reproducing kernel space - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/226225
Ver los metadatos del registro completo
| id |
CONICETDig_1e40e14b857d39bf50f7f94ede902142 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/226225 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Pseudo-dual pairs and branching of Discrete SeriesVargas, Jorge AntonioAdmissible restrictionDiscrete seriesBranching lawsReproducing kernel spacehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For a semisimple Lie group G, we study Discrete Series representations with admissible branching to a symmetric subgroup H. This is done using a canonical associated symmetric subgroup H0, forming a pseudo-dual pair with H, and a corresponding branching law for this group with respect to its maximal compact subgroup. This is in analogy with either Blattner's or Kostant-Heckmann multiplicity formulas, and has some resemblance to Frobenius reciprocity. We give several explicit examples and links to Kobayashi-Pevzner theory of symmetry breaking and holographic operators. Our method is well adapted to computer algorithms, such as for example the Atlas program.Fil: Vargas, Jorge Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. University Aarhus; DinamarcaCornell University2023-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/226225Vargas, Jorge Antonio; Pseudo-dual pairs and branching of Discrete Series; Cornell University; arXiv.org; 2-2023; 1-532331-8422CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2302.14190info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T11:41:03Zoai:ri.conicet.gov.ar:11336/226225instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 11:41:03.404CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Pseudo-dual pairs and branching of Discrete Series |
| title |
Pseudo-dual pairs and branching of Discrete Series |
| spellingShingle |
Pseudo-dual pairs and branching of Discrete Series Vargas, Jorge Antonio Admissible restriction Discrete series Branching laws Reproducing kernel space |
| title_short |
Pseudo-dual pairs and branching of Discrete Series |
| title_full |
Pseudo-dual pairs and branching of Discrete Series |
| title_fullStr |
Pseudo-dual pairs and branching of Discrete Series |
| title_full_unstemmed |
Pseudo-dual pairs and branching of Discrete Series |
| title_sort |
Pseudo-dual pairs and branching of Discrete Series |
| dc.creator.none.fl_str_mv |
Vargas, Jorge Antonio |
| author |
Vargas, Jorge Antonio |
| author_facet |
Vargas, Jorge Antonio |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Admissible restriction Discrete series Branching laws Reproducing kernel space |
| topic |
Admissible restriction Discrete series Branching laws Reproducing kernel space |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
For a semisimple Lie group G, we study Discrete Series representations with admissible branching to a symmetric subgroup H. This is done using a canonical associated symmetric subgroup H0, forming a pseudo-dual pair with H, and a corresponding branching law for this group with respect to its maximal compact subgroup. This is in analogy with either Blattner's or Kostant-Heckmann multiplicity formulas, and has some resemblance to Frobenius reciprocity. We give several explicit examples and links to Kobayashi-Pevzner theory of symmetry breaking and holographic operators. Our method is well adapted to computer algorithms, such as for example the Atlas program. Fil: Vargas, Jorge Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. University Aarhus; Dinamarca |
| description |
For a semisimple Lie group G, we study Discrete Series representations with admissible branching to a symmetric subgroup H. This is done using a canonical associated symmetric subgroup H0, forming a pseudo-dual pair with H, and a corresponding branching law for this group with respect to its maximal compact subgroup. This is in analogy with either Blattner's or Kostant-Heckmann multiplicity formulas, and has some resemblance to Frobenius reciprocity. We give several explicit examples and links to Kobayashi-Pevzner theory of symmetry breaking and holographic operators. Our method is well adapted to computer algorithms, such as for example the Atlas program. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-02 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/226225 Vargas, Jorge Antonio; Pseudo-dual pairs and branching of Discrete Series; Cornell University; arXiv.org; 2-2023; 1-53 2331-8422 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/226225 |
| identifier_str_mv |
Vargas, Jorge Antonio; Pseudo-dual pairs and branching of Discrete Series; Cornell University; arXiv.org; 2-2023; 1-53 2331-8422 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2302.14190 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Cornell University |
| publisher.none.fl_str_mv |
Cornell University |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847426299930345472 |
| score |
13.10058 |