Pseudo-dual pairs and branching of Discrete Series

Autores
Vargas, Jorge Antonio
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
For a semisimple Lie group G, we study Discrete Series representations with admissible branching to a symmetric subgroup H. This is done using a canonical associated symmetric subgroup H0, forming a pseudo-dual pair with H, and a corresponding branching law for this group with respect to its maximal compact subgroup. This is in analogy with either Blattner's or Kostant-Heckmann multiplicity formulas, and has some resemblance to Frobenius reciprocity. We give several explicit examples and links to Kobayashi-Pevzner theory of symmetry breaking and holographic operators. Our method is well adapted to computer algorithms, such as for example the Atlas program.
Fil: Vargas, Jorge Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. University Aarhus; Dinamarca
Materia
Admissible restriction
Discrete series
Branching laws
Reproducing kernel space
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/226225

id CONICETDig_1e40e14b857d39bf50f7f94ede902142
oai_identifier_str oai:ri.conicet.gov.ar:11336/226225
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Pseudo-dual pairs and branching of Discrete SeriesVargas, Jorge AntonioAdmissible restrictionDiscrete seriesBranching lawsReproducing kernel spacehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For a semisimple Lie group G, we study Discrete Series representations with admissible branching to a symmetric subgroup H. This is done using a canonical associated symmetric subgroup H0, forming a pseudo-dual pair with H, and a corresponding branching law for this group with respect to its maximal compact subgroup. This is in analogy with either Blattner's or Kostant-Heckmann multiplicity formulas, and has some resemblance to Frobenius reciprocity. We give several explicit examples and links to Kobayashi-Pevzner theory of symmetry breaking and holographic operators. Our method is well adapted to computer algorithms, such as for example the Atlas program.Fil: Vargas, Jorge Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. University Aarhus; DinamarcaCornell University2023-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/226225Vargas, Jorge Antonio; Pseudo-dual pairs and branching of Discrete Series; Cornell University; arXiv.org; 2-2023; 1-532331-8422CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2302.14190info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:41:51Zoai:ri.conicet.gov.ar:11336/226225instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:41:51.903CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Pseudo-dual pairs and branching of Discrete Series
title Pseudo-dual pairs and branching of Discrete Series
spellingShingle Pseudo-dual pairs and branching of Discrete Series
Vargas, Jorge Antonio
Admissible restriction
Discrete series
Branching laws
Reproducing kernel space
title_short Pseudo-dual pairs and branching of Discrete Series
title_full Pseudo-dual pairs and branching of Discrete Series
title_fullStr Pseudo-dual pairs and branching of Discrete Series
title_full_unstemmed Pseudo-dual pairs and branching of Discrete Series
title_sort Pseudo-dual pairs and branching of Discrete Series
dc.creator.none.fl_str_mv Vargas, Jorge Antonio
author Vargas, Jorge Antonio
author_facet Vargas, Jorge Antonio
author_role author
dc.subject.none.fl_str_mv Admissible restriction
Discrete series
Branching laws
Reproducing kernel space
topic Admissible restriction
Discrete series
Branching laws
Reproducing kernel space
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv For a semisimple Lie group G, we study Discrete Series representations with admissible branching to a symmetric subgroup H. This is done using a canonical associated symmetric subgroup H0, forming a pseudo-dual pair with H, and a corresponding branching law for this group with respect to its maximal compact subgroup. This is in analogy with either Blattner's or Kostant-Heckmann multiplicity formulas, and has some resemblance to Frobenius reciprocity. We give several explicit examples and links to Kobayashi-Pevzner theory of symmetry breaking and holographic operators. Our method is well adapted to computer algorithms, such as for example the Atlas program.
Fil: Vargas, Jorge Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. University Aarhus; Dinamarca
description For a semisimple Lie group G, we study Discrete Series representations with admissible branching to a symmetric subgroup H. This is done using a canonical associated symmetric subgroup H0, forming a pseudo-dual pair with H, and a corresponding branching law for this group with respect to its maximal compact subgroup. This is in analogy with either Blattner's or Kostant-Heckmann multiplicity formulas, and has some resemblance to Frobenius reciprocity. We give several explicit examples and links to Kobayashi-Pevzner theory of symmetry breaking and holographic operators. Our method is well adapted to computer algorithms, such as for example the Atlas program.
publishDate 2023
dc.date.none.fl_str_mv 2023-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/226225
Vargas, Jorge Antonio; Pseudo-dual pairs and branching of Discrete Series; Cornell University; arXiv.org; 2-2023; 1-53
2331-8422
CONICET Digital
CONICET
url http://hdl.handle.net/11336/226225
identifier_str_mv Vargas, Jorge Antonio; Pseudo-dual pairs and branching of Discrete Series; Cornell University; arXiv.org; 2-2023; 1-53
2331-8422
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2302.14190
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Cornell University
publisher.none.fl_str_mv Cornell University
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613320219295744
score 13.070432