Coarse grained approach for volume conserving models

Autores
Hansmann, David; Buceta, Ruben Carlos
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Volume conserving surface (VCS) models without deposition and evaporation, as well as ideal molecular-beam epitaxy models, are prototypes to study the symmetries of conserved dynamics. In this work we study two similar VCS models with conserved noise, which differ from each other by the axial symmetry of their dynamic hopping rules. We use a coarse-grained approach to analyze the models and show how to determine the coefficients of their corresponding continuous stochastic differential equation (SDE) within the same universality class. The employed method makes use of small translations in a test space which contains the stationary probability density function (SPDF). In case of the symmetric model we calculate all the coarse-grained coefficients of the related conserved Kardar-Parisi-Zhang (KPZ) equation. With respect to the symmetric model, the asymmetric model adds new terms which have to be analyzed, first of all the diffusion term, whose coarse-grained coefficient can be determined by the same method. In contrast to other methods, the used formalism allows to calculate all coefficients of the SDE theoretically and within limits numerically. Above all, the used approach connects the coefficients of the SDE with the SPDF and hence gives them a precise physical meaning.
Fil: Hansmann, David. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Buceta, Ruben Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Materia
Volume conserving models
Molecular-beam-epitaxy models
conserved KPZ equation
Generalized function
test function method
stochastic differential equation coefficients
coarse grained approach
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/8206

id CONICETDig_e5713aa1c589d9d82e98fb5bf12be169
oai_identifier_str oai:ri.conicet.gov.ar:11336/8206
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Coarse grained approach for volume conserving modelsHansmann, DavidBuceta, Ruben CarlosVolume conserving modelsMolecular-beam-epitaxy modelsconserved KPZ equationGeneralized functiontest function methodstochastic differential equation coefficientscoarse grained approachhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Volume conserving surface (VCS) models without deposition and evaporation, as well as ideal molecular-beam epitaxy models, are prototypes to study the symmetries of conserved dynamics. In this work we study two similar VCS models with conserved noise, which differ from each other by the axial symmetry of their dynamic hopping rules. We use a coarse-grained approach to analyze the models and show how to determine the coefficients of their corresponding continuous stochastic differential equation (SDE) within the same universality class. The employed method makes use of small translations in a test space which contains the stationary probability density function (SPDF). In case of the symmetric model we calculate all the coarse-grained coefficients of the related conserved Kardar-Parisi-Zhang (KPZ) equation. With respect to the symmetric model, the asymmetric model adds new terms which have to be analyzed, first of all the diffusion term, whose coarse-grained coefficient can be determined by the same method. In contrast to other methods, the used formalism allows to calculate all coefficients of the SDE theoretically and within limits numerically. Above all, the used approach connects the coefficients of the SDE with the SPDF and hence gives them a precise physical meaning.Fil: Hansmann, David. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Buceta, Ruben Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaElsevier2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/8206Hansmann, David; Buceta, Ruben Carlos; Coarse grained approach for volume conserving models; Elsevier; Physica A: Statistical Mechanics And Its Applications; 392; 14; 3-2013; 3018-30270378-4371enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2013.03.020info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437113002379info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:13Zoai:ri.conicet.gov.ar:11336/8206instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:13.402CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Coarse grained approach for volume conserving models
title Coarse grained approach for volume conserving models
spellingShingle Coarse grained approach for volume conserving models
Hansmann, David
Volume conserving models
Molecular-beam-epitaxy models
conserved KPZ equation
Generalized function
test function method
stochastic differential equation coefficients
coarse grained approach
title_short Coarse grained approach for volume conserving models
title_full Coarse grained approach for volume conserving models
title_fullStr Coarse grained approach for volume conserving models
title_full_unstemmed Coarse grained approach for volume conserving models
title_sort Coarse grained approach for volume conserving models
dc.creator.none.fl_str_mv Hansmann, David
Buceta, Ruben Carlos
author Hansmann, David
author_facet Hansmann, David
Buceta, Ruben Carlos
author_role author
author2 Buceta, Ruben Carlos
author2_role author
dc.subject.none.fl_str_mv Volume conserving models
Molecular-beam-epitaxy models
conserved KPZ equation
Generalized function
test function method
stochastic differential equation coefficients
coarse grained approach
topic Volume conserving models
Molecular-beam-epitaxy models
conserved KPZ equation
Generalized function
test function method
stochastic differential equation coefficients
coarse grained approach
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Volume conserving surface (VCS) models without deposition and evaporation, as well as ideal molecular-beam epitaxy models, are prototypes to study the symmetries of conserved dynamics. In this work we study two similar VCS models with conserved noise, which differ from each other by the axial symmetry of their dynamic hopping rules. We use a coarse-grained approach to analyze the models and show how to determine the coefficients of their corresponding continuous stochastic differential equation (SDE) within the same universality class. The employed method makes use of small translations in a test space which contains the stationary probability density function (SPDF). In case of the symmetric model we calculate all the coarse-grained coefficients of the related conserved Kardar-Parisi-Zhang (KPZ) equation. With respect to the symmetric model, the asymmetric model adds new terms which have to be analyzed, first of all the diffusion term, whose coarse-grained coefficient can be determined by the same method. In contrast to other methods, the used formalism allows to calculate all coefficients of the SDE theoretically and within limits numerically. Above all, the used approach connects the coefficients of the SDE with the SPDF and hence gives them a precise physical meaning.
Fil: Hansmann, David. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Buceta, Ruben Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
description Volume conserving surface (VCS) models without deposition and evaporation, as well as ideal molecular-beam epitaxy models, are prototypes to study the symmetries of conserved dynamics. In this work we study two similar VCS models with conserved noise, which differ from each other by the axial symmetry of their dynamic hopping rules. We use a coarse-grained approach to analyze the models and show how to determine the coefficients of their corresponding continuous stochastic differential equation (SDE) within the same universality class. The employed method makes use of small translations in a test space which contains the stationary probability density function (SPDF). In case of the symmetric model we calculate all the coarse-grained coefficients of the related conserved Kardar-Parisi-Zhang (KPZ) equation. With respect to the symmetric model, the asymmetric model adds new terms which have to be analyzed, first of all the diffusion term, whose coarse-grained coefficient can be determined by the same method. In contrast to other methods, the used formalism allows to calculate all coefficients of the SDE theoretically and within limits numerically. Above all, the used approach connects the coefficients of the SDE with the SPDF and hence gives them a precise physical meaning.
publishDate 2013
dc.date.none.fl_str_mv 2013-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/8206
Hansmann, David; Buceta, Ruben Carlos; Coarse grained approach for volume conserving models; Elsevier; Physica A: Statistical Mechanics And Its Applications; 392; 14; 3-2013; 3018-3027
0378-4371
url http://hdl.handle.net/11336/8206
identifier_str_mv Hansmann, David; Buceta, Ruben Carlos; Coarse grained approach for volume conserving models; Elsevier; Physica A: Statistical Mechanics And Its Applications; 392; 14; 3-2013; 3018-3027
0378-4371
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2013.03.020
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437113002379
info:eu-repo/semantics/altIdentifier/doi/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613272537399296
score 13.070432