Another Coarse Grain Model for Aqueous Solvation: WAT FOUR?
- Autores
- Darre, Leonardo; Machado, Matías; Dans, Pablo; Herrera, Fernando Enrique; Pantano, Sergio
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Biological processes occur on space and time scales that are often unreachable for fully atomistic simulations. Therefore, simplified or coarse grain (CG) models for the theoretical study of these systems are frequently used. In this context, the accurate description of solvation properties remains an important and challenging field. In the present work, we report a new CG model based on the transient tetrahedral structures observed in pure water. Our representation lumps approximately 11 WATer molecules into FOUR tetrahedrally interconnected beads, hence the name WAT FOUR (WT4). Each bead carries a partial charge allowing the model to explicitly consider long-range electrostatics, generating its own dielectric permittivity and obviating the shortcomings of a uniform dielectric constant. We obtained a good representation of the aqueous environment for most biologically relevant temperature conditions in the range from 278 to 328 K. The model is applied to solvate simple CG electrolytes developed in this work (Na+, K+, and Cl-) and a recently published simplified representation of nucleic acids. In both cases, we obtained a good resemblance of experimental data and atomistic simulations. In particular, the solvation structure around DNA, partial charge neutralization by counterions, preference for sodium over potassium, and ion mediated minor groove narrowing as reported from X-raycrystallography are well reproduced by the present scheme. The set of parameters presented here opens the possibility of reaching the multimicroseconds time scale, including explicit solvation, ionic specificity, and long-range electrostatics, keeping nearly atomistic resolution with significantly reduced computational cost.
Fil: Darre, Leonardo. Instituto Pasteur de Montevideo; Uruguay
Fil: Machado, Matías. Instituto Pasteur de Montevideo; Uruguay
Fil: Dans, Pablo. Instituto Pasteur de Montevideo; Uruguay
Fil: Herrera, Fernando Enrique. Universidad Nacional del Litoral; Argentina
Fil: Pantano, Sergio. Instituto Pasteur de Montevideo; Uruguay - Materia
-
WATER
MODEL
COARSE
GRAIN - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/101433
Ver los metadatos del registro completo
id |
CONICETDig_09c93cbefb2f6c68bd939fbde3996fab |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/101433 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Another Coarse Grain Model for Aqueous Solvation: WAT FOUR?Darre, LeonardoMachado, MatíasDans, PabloHerrera, Fernando EnriquePantano, SergioWATERMODELCOARSEGRAINhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Biological processes occur on space and time scales that are often unreachable for fully atomistic simulations. Therefore, simplified or coarse grain (CG) models for the theoretical study of these systems are frequently used. In this context, the accurate description of solvation properties remains an important and challenging field. In the present work, we report a new CG model based on the transient tetrahedral structures observed in pure water. Our representation lumps approximately 11 WATer molecules into FOUR tetrahedrally interconnected beads, hence the name WAT FOUR (WT4). Each bead carries a partial charge allowing the model to explicitly consider long-range electrostatics, generating its own dielectric permittivity and obviating the shortcomings of a uniform dielectric constant. We obtained a good representation of the aqueous environment for most biologically relevant temperature conditions in the range from 278 to 328 K. The model is applied to solvate simple CG electrolytes developed in this work (Na+, K+, and Cl-) and a recently published simplified representation of nucleic acids. In both cases, we obtained a good resemblance of experimental data and atomistic simulations. In particular, the solvation structure around DNA, partial charge neutralization by counterions, preference for sodium over potassium, and ion mediated minor groove narrowing as reported from X-raycrystallography are well reproduced by the present scheme. The set of parameters presented here opens the possibility of reaching the multimicroseconds time scale, including explicit solvation, ionic specificity, and long-range electrostatics, keeping nearly atomistic resolution with significantly reduced computational cost.Fil: Darre, Leonardo. Instituto Pasteur de Montevideo; UruguayFil: Machado, Matías. Instituto Pasteur de Montevideo; UruguayFil: Dans, Pablo. Instituto Pasteur de Montevideo; UruguayFil: Herrera, Fernando Enrique. Universidad Nacional del Litoral; ArgentinaFil: Pantano, Sergio. Instituto Pasteur de Montevideo; UruguayAmerican Chemical Society2010-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/101433Darre, Leonardo; Machado, Matías; Dans, Pablo; Herrera, Fernando Enrique; Pantano, Sergio; Another Coarse Grain Model for Aqueous Solvation: WAT FOUR?; American Chemical Society; Journal of Chemical Theory and Computation; 6; 12; 11-2010; 3793-38071549-9618CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/ct100379finfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:22:28Zoai:ri.conicet.gov.ar:11336/101433instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:22:28.519CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Another Coarse Grain Model for Aqueous Solvation: WAT FOUR? |
title |
Another Coarse Grain Model for Aqueous Solvation: WAT FOUR? |
spellingShingle |
Another Coarse Grain Model for Aqueous Solvation: WAT FOUR? Darre, Leonardo WATER MODEL COARSE GRAIN |
title_short |
Another Coarse Grain Model for Aqueous Solvation: WAT FOUR? |
title_full |
Another Coarse Grain Model for Aqueous Solvation: WAT FOUR? |
title_fullStr |
Another Coarse Grain Model for Aqueous Solvation: WAT FOUR? |
title_full_unstemmed |
Another Coarse Grain Model for Aqueous Solvation: WAT FOUR? |
title_sort |
Another Coarse Grain Model for Aqueous Solvation: WAT FOUR? |
dc.creator.none.fl_str_mv |
Darre, Leonardo Machado, Matías Dans, Pablo Herrera, Fernando Enrique Pantano, Sergio |
author |
Darre, Leonardo |
author_facet |
Darre, Leonardo Machado, Matías Dans, Pablo Herrera, Fernando Enrique Pantano, Sergio |
author_role |
author |
author2 |
Machado, Matías Dans, Pablo Herrera, Fernando Enrique Pantano, Sergio |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
WATER MODEL COARSE GRAIN |
topic |
WATER MODEL COARSE GRAIN |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Biological processes occur on space and time scales that are often unreachable for fully atomistic simulations. Therefore, simplified or coarse grain (CG) models for the theoretical study of these systems are frequently used. In this context, the accurate description of solvation properties remains an important and challenging field. In the present work, we report a new CG model based on the transient tetrahedral structures observed in pure water. Our representation lumps approximately 11 WATer molecules into FOUR tetrahedrally interconnected beads, hence the name WAT FOUR (WT4). Each bead carries a partial charge allowing the model to explicitly consider long-range electrostatics, generating its own dielectric permittivity and obviating the shortcomings of a uniform dielectric constant. We obtained a good representation of the aqueous environment for most biologically relevant temperature conditions in the range from 278 to 328 K. The model is applied to solvate simple CG electrolytes developed in this work (Na+, K+, and Cl-) and a recently published simplified representation of nucleic acids. In both cases, we obtained a good resemblance of experimental data and atomistic simulations. In particular, the solvation structure around DNA, partial charge neutralization by counterions, preference for sodium over potassium, and ion mediated minor groove narrowing as reported from X-raycrystallography are well reproduced by the present scheme. The set of parameters presented here opens the possibility of reaching the multimicroseconds time scale, including explicit solvation, ionic specificity, and long-range electrostatics, keeping nearly atomistic resolution with significantly reduced computational cost. Fil: Darre, Leonardo. Instituto Pasteur de Montevideo; Uruguay Fil: Machado, Matías. Instituto Pasteur de Montevideo; Uruguay Fil: Dans, Pablo. Instituto Pasteur de Montevideo; Uruguay Fil: Herrera, Fernando Enrique. Universidad Nacional del Litoral; Argentina Fil: Pantano, Sergio. Instituto Pasteur de Montevideo; Uruguay |
description |
Biological processes occur on space and time scales that are often unreachable for fully atomistic simulations. Therefore, simplified or coarse grain (CG) models for the theoretical study of these systems are frequently used. In this context, the accurate description of solvation properties remains an important and challenging field. In the present work, we report a new CG model based on the transient tetrahedral structures observed in pure water. Our representation lumps approximately 11 WATer molecules into FOUR tetrahedrally interconnected beads, hence the name WAT FOUR (WT4). Each bead carries a partial charge allowing the model to explicitly consider long-range electrostatics, generating its own dielectric permittivity and obviating the shortcomings of a uniform dielectric constant. We obtained a good representation of the aqueous environment for most biologically relevant temperature conditions in the range from 278 to 328 K. The model is applied to solvate simple CG electrolytes developed in this work (Na+, K+, and Cl-) and a recently published simplified representation of nucleic acids. In both cases, we obtained a good resemblance of experimental data and atomistic simulations. In particular, the solvation structure around DNA, partial charge neutralization by counterions, preference for sodium over potassium, and ion mediated minor groove narrowing as reported from X-raycrystallography are well reproduced by the present scheme. The set of parameters presented here opens the possibility of reaching the multimicroseconds time scale, including explicit solvation, ionic specificity, and long-range electrostatics, keeping nearly atomistic resolution with significantly reduced computational cost. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/101433 Darre, Leonardo; Machado, Matías; Dans, Pablo; Herrera, Fernando Enrique; Pantano, Sergio; Another Coarse Grain Model for Aqueous Solvation: WAT FOUR?; American Chemical Society; Journal of Chemical Theory and Computation; 6; 12; 11-2010; 3793-3807 1549-9618 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/101433 |
identifier_str_mv |
Darre, Leonardo; Machado, Matías; Dans, Pablo; Herrera, Fernando Enrique; Pantano, Sergio; Another Coarse Grain Model for Aqueous Solvation: WAT FOUR?; American Chemical Society; Journal of Chemical Theory and Computation; 6; 12; 11-2010; 3793-3807 1549-9618 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1021/ct100379f |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981237379039232 |
score |
12.48226 |